YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Stress Intensity Factors for Partially Autofrettaged Pressurized Thick-Walled Cylinders Containing Closely and Densely Packed Cracks

    Source: Journal of Pressure Vessel Technology:;2010:;volume( 132 ):;issue: 005::page 51203
    Author:
    Q. Ma
    ,
    C. Levy
    ,
    M. Perl
    DOI: 10.1115/1.4001430
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Due to acute temperature gradients and repetitive high-pressure impulses, extremely dense internal surface cracks can be practically developed in highly pressurized thick-walled vessels, typically in gun barrels. In the authors’ previous studies, networks of typical radial and longitudinal-coplanar, semi-elliptical, internal surface cracks have been investigated assuming both ideal and realistic full autofrettage residual stress fields (ε=100%). The aim of the present work is to extend the analysis twofold: to include various levels of partially autofrettaged cylinders and to consider configurations of closely and densely packed radial crack arrays. To accurately assess the stress intensity factors (SIFs), significant computational efforts and strategies are necessary, especially for networks with closely and densely packed cracks. This study focuses on the determination of the distributions along the crack fronts of KIP, the stress intensity factor due to internal pressure KIA, the negative stress intensity factor resulting from the residual stress field due to ideal or realistic autofrettage, and KIN, the combined SIF KIN=KIP−|KIA|. The analysis is performed for over 1000 configurations of closely and densely packed semicircular and semi-elliptical networked cracks affected by pressure and partial-to-full autofrettage levels of ε=30–100%, which is of practical benefit in autofrettaged thick-walled pressure vessels. The 3-D analysis is performed via the finite element method and the submodeling technique employing singular elements along the crack front and the various symmetries of the problem. The network cracks will include up to 128 equally spaced cracks in the radial direction: with relative longitudinal crack spacing, 2c/d, from 0.1 to 0.99; autofrettage level of 30–100%; crack depth to wall thickness ratios, a/t, from 0.01 to 0.4; and, cracks with various ellipticities of crack depth to semicrack length, a/c, from 0.2 to 2. The results clearly indicate that the combined SIFs are considerably influenced by the three dimensionality of the problem and the Bauschinger effect (BE). The Bauschinger effect is found to have a dramatic effect on the prevailing combined stress intensity factors, resulting in a considerable reduction of the fatigue life of the pressure vessel. While the fatigue life can be finite for ideal autofrettage, it is normally finite for realistic autofrettage for the same crack network. Furthermore, it has been found that there are differences in the character of the SIFs between closely packed and densely packed crack networks, namely, more dramatic drop-offs in KIA and KIN at the crack-inner bore interface for densely packed cracks further influenced by crack depth.
    keyword(s): Stress , Fracture (Materials) , Cylinders AND Autofrettage ,
    • Download: (1.242Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Stress Intensity Factors for Partially Autofrettaged Pressurized Thick-Walled Cylinders Containing Closely and Densely Packed Cracks

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/144639
    Collections
    • Journal of Pressure Vessel Technology

    Show full item record

    contributor authorQ. Ma
    contributor authorC. Levy
    contributor authorM. Perl
    date accessioned2017-05-09T00:40:28Z
    date available2017-05-09T00:40:28Z
    date copyrightOctober, 2010
    date issued2010
    identifier issn0094-9930
    identifier otherJPVTAS-28535#051203_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/144639
    description abstractDue to acute temperature gradients and repetitive high-pressure impulses, extremely dense internal surface cracks can be practically developed in highly pressurized thick-walled vessels, typically in gun barrels. In the authors’ previous studies, networks of typical radial and longitudinal-coplanar, semi-elliptical, internal surface cracks have been investigated assuming both ideal and realistic full autofrettage residual stress fields (ε=100%). The aim of the present work is to extend the analysis twofold: to include various levels of partially autofrettaged cylinders and to consider configurations of closely and densely packed radial crack arrays. To accurately assess the stress intensity factors (SIFs), significant computational efforts and strategies are necessary, especially for networks with closely and densely packed cracks. This study focuses on the determination of the distributions along the crack fronts of KIP, the stress intensity factor due to internal pressure KIA, the negative stress intensity factor resulting from the residual stress field due to ideal or realistic autofrettage, and KIN, the combined SIF KIN=KIP−|KIA|. The analysis is performed for over 1000 configurations of closely and densely packed semicircular and semi-elliptical networked cracks affected by pressure and partial-to-full autofrettage levels of ε=30–100%, which is of practical benefit in autofrettaged thick-walled pressure vessels. The 3-D analysis is performed via the finite element method and the submodeling technique employing singular elements along the crack front and the various symmetries of the problem. The network cracks will include up to 128 equally spaced cracks in the radial direction: with relative longitudinal crack spacing, 2c/d, from 0.1 to 0.99; autofrettage level of 30–100%; crack depth to wall thickness ratios, a/t, from 0.01 to 0.4; and, cracks with various ellipticities of crack depth to semicrack length, a/c, from 0.2 to 2. The results clearly indicate that the combined SIFs are considerably influenced by the three dimensionality of the problem and the Bauschinger effect (BE). The Bauschinger effect is found to have a dramatic effect on the prevailing combined stress intensity factors, resulting in a considerable reduction of the fatigue life of the pressure vessel. While the fatigue life can be finite for ideal autofrettage, it is normally finite for realistic autofrettage for the same crack network. Furthermore, it has been found that there are differences in the character of the SIFs between closely packed and densely packed crack networks, namely, more dramatic drop-offs in KIA and KIN at the crack-inner bore interface for densely packed cracks further influenced by crack depth.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleStress Intensity Factors for Partially Autofrettaged Pressurized Thick-Walled Cylinders Containing Closely and Densely Packed Cracks
    typeJournal Paper
    journal volume132
    journal issue5
    journal titleJournal of Pressure Vessel Technology
    identifier doi10.1115/1.4001430
    journal fristpage51203
    identifier eissn1528-8978
    keywordsStress
    keywordsFracture (Materials)
    keywordsCylinders AND Autofrettage
    treeJournal of Pressure Vessel Technology:;2010:;volume( 132 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian