YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Technical Basis for Acceptance/Rejection Criteria for Flaws in High Pressure Gas Cylinder

    Source: Journal of Pressure Vessel Technology:;2010:;volume( 132 ):;issue: 006::page 61102
    Author:
    Mahendra D. Rana
    ,
    John H. Smith
    ,
    Henry Holroyd
    DOI: 10.1115/1.4001657
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The objective of this paper is to present the technical basis used for developing acceptance/rejection limits for seamless, high pressure gas cylinders that can be used at the time of retesting the cylinders. The development of acceptance/rejection limits for cylinders is done in three steps. First, the “critical flaw sizes” (e.g., depth and length or area) for selected types of flaws are established by an analysis procedure that has been verified by experimental tests. Next the “allowable flaw sizes” are calculated by modifying (reducing) the size of the critical flaw sizes for each cylinder by adjusting for fatigue crack growth that may occur during the use of the cylinder. Finally, the “acceptance/rejection criteria” is established to take into account other factors, such as all the expected operating conditions that the cylinders may see in service, and the reliability and detectability of the specific inspection equipment to be used and to adjust the allowable flaw sizes to provide an additional margin of safety. This acceptance/rejection limits have been incorporated in a recently published ISO Technical Report No. TR 22694:2008 (2007, “Gas Cylinders—Methods for Establishing Acceptance/Rejection Criteria for Flaws in Seamless Steel and Aluminum Alloy Cylinders at Time of Periodic Inspection and Requalification,” The International Standards Organization, Geneva, Switzerland, Technical Report No. 22694). In this work, the API 579 “Recommended Practice for Fitness-for-Service” (2000, API 579: Recommended Practice for Fitness-for-Service, 1st ed., American Petroleum Institute, Washington, DC) was used to calculate the critical flaw sizes for a range of cylinder sizes and strength levels. For this study, the critical flaw size is defined as the size of the flaw that will cause the cylinders to fail at the test pressure of the cylinder. The results of flawed-cylinder burst tests were used to experimentally verify the calculated critical flaw sizes. The allowable flaw sizes were then calculated by using well established fatigue crack growth rate data for steel and aluminum alloys to allow for the expected amount of fatigue crack growth that may occur during the specified retesting intervals. A limited number of tests was conducted to verify the allowable flaw size calculations. Further adjustments are made to the allowable flaw sizes to define the acceptance/rejection criteria to be used during cylinder retesting.
    keyword(s): Pressure , Steel , Cylinders AND American Petroleum Institute ,
    • Download: (701.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Technical Basis for Acceptance/Rejection Criteria for Flaws in High Pressure Gas Cylinder

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/144614
    Collections
    • Journal of Pressure Vessel Technology

    Show full item record

    contributor authorMahendra D. Rana
    contributor authorJohn H. Smith
    contributor authorHenry Holroyd
    date accessioned2017-05-09T00:40:25Z
    date available2017-05-09T00:40:25Z
    date copyrightDecember, 2010
    date issued2010
    identifier issn0094-9930
    identifier otherJPVTAS-28536#061102_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/144614
    description abstractThe objective of this paper is to present the technical basis used for developing acceptance/rejection limits for seamless, high pressure gas cylinders that can be used at the time of retesting the cylinders. The development of acceptance/rejection limits for cylinders is done in three steps. First, the “critical flaw sizes” (e.g., depth and length or area) for selected types of flaws are established by an analysis procedure that has been verified by experimental tests. Next the “allowable flaw sizes” are calculated by modifying (reducing) the size of the critical flaw sizes for each cylinder by adjusting for fatigue crack growth that may occur during the use of the cylinder. Finally, the “acceptance/rejection criteria” is established to take into account other factors, such as all the expected operating conditions that the cylinders may see in service, and the reliability and detectability of the specific inspection equipment to be used and to adjust the allowable flaw sizes to provide an additional margin of safety. This acceptance/rejection limits have been incorporated in a recently published ISO Technical Report No. TR 22694:2008 (2007, “Gas Cylinders—Methods for Establishing Acceptance/Rejection Criteria for Flaws in Seamless Steel and Aluminum Alloy Cylinders at Time of Periodic Inspection and Requalification,” The International Standards Organization, Geneva, Switzerland, Technical Report No. 22694). In this work, the API 579 “Recommended Practice for Fitness-for-Service” (2000, API 579: Recommended Practice for Fitness-for-Service, 1st ed., American Petroleum Institute, Washington, DC) was used to calculate the critical flaw sizes for a range of cylinder sizes and strength levels. For this study, the critical flaw size is defined as the size of the flaw that will cause the cylinders to fail at the test pressure of the cylinder. The results of flawed-cylinder burst tests were used to experimentally verify the calculated critical flaw sizes. The allowable flaw sizes were then calculated by using well established fatigue crack growth rate data for steel and aluminum alloys to allow for the expected amount of fatigue crack growth that may occur during the specified retesting intervals. A limited number of tests was conducted to verify the allowable flaw size calculations. Further adjustments are made to the allowable flaw sizes to define the acceptance/rejection criteria to be used during cylinder retesting.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleTechnical Basis for Acceptance/Rejection Criteria for Flaws in High Pressure Gas Cylinder
    typeJournal Paper
    journal volume132
    journal issue6
    journal titleJournal of Pressure Vessel Technology
    identifier doi10.1115/1.4001657
    journal fristpage61102
    identifier eissn1528-8978
    keywordsPressure
    keywordsSteel
    keywordsCylinders AND American Petroleum Institute
    treeJournal of Pressure Vessel Technology:;2010:;volume( 132 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian