YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Offshore Mechanics and Arctic Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Offshore Mechanics and Arctic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Effects of Inner-Liquid Motion on LNG Vessel Responses

    Source: Journal of Offshore Mechanics and Arctic Engineering:;2010:;volume( 132 ):;issue: 002::page 21101
    Author:
    S. J. Lee
    ,
    M. H. Kim
    DOI: 10.1115/1.4000391
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The coupling and interactions between ship motion and inner-tank sloshing are investigated by a potential-viscous hybrid method in the time domain. For the time-domain simulation of vessel motion, the hydrodynamic coefficients and wave forces are obtained by a potential-theory-based 3D diffraction/radiation panel program in the frequency domain. Then, the corresponding simulations of motions in the time domain are carried out using the convolution-integral method. The liquid sloshing in a tank is simulated in the time domain by a Navier–Stokes solver. A finite difference method with SURF scheme assuming the single-valued free-surface profile is applied for the direct simulation of liquid sloshing. The computed sloshing forces and moments are then applied as external excitations to the ship motion. The calculated ship motion is in turn inputted as the excitation for liquid sloshing, which is repeated for the ensuing time steps. For comparison, we independently developed a 3D panel program for linear inner-fluid motions, and it is coupled with the vessel-motion program in the frequency domain. The developed computer programs are applied to a barge-type floating production storage and offloading (FPSO) hull equipped with two partially filled tanks. The time-domain simulation results show reasonably good agreement when compared with Maritime Research Institute Netherlands (MARIN’s) experimental results. The frequency-domain results qualitatively reproduce the trend of coupling effects, but the peaks are in general overpredicted. It is seen that the coupling effects on roll motions appreciably change with filling level. The most pronounced coupling effects on roll motions are the shift or split of peak frequencies. The pitch motions are much less influenced by the inner-fluid motion compared with roll motions.
    • Download: (1.234Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Effects of Inner-Liquid Motion on LNG Vessel Responses

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/144593
    Collections
    • Journal of Offshore Mechanics and Arctic Engineering

    Show full item record

    contributor authorS. J. Lee
    contributor authorM. H. Kim
    date accessioned2017-05-09T00:40:23Z
    date available2017-05-09T00:40:23Z
    date copyrightMay, 2010
    date issued2010
    identifier issn0892-7219
    identifier otherJMOEEX-28360#021101_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/144593
    description abstractThe coupling and interactions between ship motion and inner-tank sloshing are investigated by a potential-viscous hybrid method in the time domain. For the time-domain simulation of vessel motion, the hydrodynamic coefficients and wave forces are obtained by a potential-theory-based 3D diffraction/radiation panel program in the frequency domain. Then, the corresponding simulations of motions in the time domain are carried out using the convolution-integral method. The liquid sloshing in a tank is simulated in the time domain by a Navier–Stokes solver. A finite difference method with SURF scheme assuming the single-valued free-surface profile is applied for the direct simulation of liquid sloshing. The computed sloshing forces and moments are then applied as external excitations to the ship motion. The calculated ship motion is in turn inputted as the excitation for liquid sloshing, which is repeated for the ensuing time steps. For comparison, we independently developed a 3D panel program for linear inner-fluid motions, and it is coupled with the vessel-motion program in the frequency domain. The developed computer programs are applied to a barge-type floating production storage and offloading (FPSO) hull equipped with two partially filled tanks. The time-domain simulation results show reasonably good agreement when compared with Maritime Research Institute Netherlands (MARIN’s) experimental results. The frequency-domain results qualitatively reproduce the trend of coupling effects, but the peaks are in general overpredicted. It is seen that the coupling effects on roll motions appreciably change with filling level. The most pronounced coupling effects on roll motions are the shift or split of peak frequencies. The pitch motions are much less influenced by the inner-fluid motion compared with roll motions.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThe Effects of Inner-Liquid Motion on LNG Vessel Responses
    typeJournal Paper
    journal volume132
    journal issue2
    journal titleJournal of Offshore Mechanics and Arctic Engineering
    identifier doi10.1115/1.4000391
    journal fristpage21101
    identifier eissn1528-896X
    treeJournal of Offshore Mechanics and Arctic Engineering:;2010:;volume( 132 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian