YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Nanotechnology in Engineering and Medicine
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Nanotechnology in Engineering and Medicine
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Nanoclay Based Composite Scaffolds for Bone Tissue Engineering Applications

    Source: Journal of Nanotechnology in Engineering and Medicine:;2010:;volume( 001 ):;issue: 003::page 31013
    Author:
    Avinash H. Ambre
    ,
    Kalpana S. Katti
    ,
    Dinesh R. Katti
    DOI: 10.1115/1.4002149
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Scaffolds based on chitosan/polygalacturonic acid (ChiPgA) complex containing montmorillonite (MMT) clay modified with 5-aminovaleric acid were prepared using freeze-drying technique. The MMT clay was introduced to improve mechanical properties of the scaffold. The microstructure of the scaffolds containing the modified MMT clay was influenced by the incorporation of nanoclays. The MTT assay also indicated that the number of osteoblast cells in ChiPgA scaffolds containing the modified clay was comparable to ChiPgA scaffolds containing hydroxyapatite known for its osteoconductive properties. Overall, the ChiPgA composite scaffolds were found to be biocompatible. This was also indicated by the scanning electron microscopy images of the ChiPgA composite scaffolds seeded with human osteoblast cells. Photoacoustic–Fourier transform infrared (PA-FTIR) experiments on the ChiPgA composite scaffolds indicated formation of a polyelectrolyte complex between chitosan and polygalacturonic acid. PA-FTIR studies also showed that the MMT clay modified with 5-aminovaleric acid was successfully incorporated in the ChiPgA based scaffolds. Swelling studies on ChiPgA composite scaffolds showed the swelling ability of the scaffolds that indicated that the cells and the nutrients would be able to reach the interior parts of the scaffolds. In addition to this, the ChiPgA scaffolds exhibited porosity greater than 90% as appropriate for scaffolds used in tissue engineering studies. High porosity facilitates the nutrient transport throughout the scaffold and also plays a role in the development of adequate vasculature throughout the scaffold. Compressive mechanical tests on the scaffolds showed that the ChiPgA composite scaffolds had compressive elastic moduli in the range of 4–6 MPa and appear to be affected by the high porosity of the scaffolds. Thus, the ChiPgA composite scaffolds containing MMT clay modified with 5-aminovaleric acid are biocompatible. Also, the ChiPgA scaffolds containing the modified MMT clay appears to satisfy some of the basic requirements of scaffolds for tissue engineering applications.
    keyword(s): Composite materials , Bone , Tissue engineering , Nanoclays , Osteoblasts , Mechanical properties , Porosity , Biocompatibility , Drying , Engineering systems and industry applications AND Fourier transform infrared spectroscopy ,
    • Download: (747.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Nanoclay Based Composite Scaffolds for Bone Tissue Engineering Applications

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/144538
    Collections
    • Journal of Nanotechnology in Engineering and Medicine

    Show full item record

    contributor authorAvinash H. Ambre
    contributor authorKalpana S. Katti
    contributor authorDinesh R. Katti
    date accessioned2017-05-09T00:40:15Z
    date available2017-05-09T00:40:15Z
    date copyrightAugust, 2010
    date issued2010
    identifier issn1949-2944
    identifier otherJNEMAA-28038#031013_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/144538
    description abstractScaffolds based on chitosan/polygalacturonic acid (ChiPgA) complex containing montmorillonite (MMT) clay modified with 5-aminovaleric acid were prepared using freeze-drying technique. The MMT clay was introduced to improve mechanical properties of the scaffold. The microstructure of the scaffolds containing the modified MMT clay was influenced by the incorporation of nanoclays. The MTT assay also indicated that the number of osteoblast cells in ChiPgA scaffolds containing the modified clay was comparable to ChiPgA scaffolds containing hydroxyapatite known for its osteoconductive properties. Overall, the ChiPgA composite scaffolds were found to be biocompatible. This was also indicated by the scanning electron microscopy images of the ChiPgA composite scaffolds seeded with human osteoblast cells. Photoacoustic–Fourier transform infrared (PA-FTIR) experiments on the ChiPgA composite scaffolds indicated formation of a polyelectrolyte complex between chitosan and polygalacturonic acid. PA-FTIR studies also showed that the MMT clay modified with 5-aminovaleric acid was successfully incorporated in the ChiPgA based scaffolds. Swelling studies on ChiPgA composite scaffolds showed the swelling ability of the scaffolds that indicated that the cells and the nutrients would be able to reach the interior parts of the scaffolds. In addition to this, the ChiPgA scaffolds exhibited porosity greater than 90% as appropriate for scaffolds used in tissue engineering studies. High porosity facilitates the nutrient transport throughout the scaffold and also plays a role in the development of adequate vasculature throughout the scaffold. Compressive mechanical tests on the scaffolds showed that the ChiPgA composite scaffolds had compressive elastic moduli in the range of 4–6 MPa and appear to be affected by the high porosity of the scaffolds. Thus, the ChiPgA composite scaffolds containing MMT clay modified with 5-aminovaleric acid are biocompatible. Also, the ChiPgA scaffolds containing the modified MMT clay appears to satisfy some of the basic requirements of scaffolds for tissue engineering applications.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNanoclay Based Composite Scaffolds for Bone Tissue Engineering Applications
    typeJournal Paper
    journal volume1
    journal issue3
    journal titleJournal of Nanotechnology in Engineering and Medicine
    identifier doi10.1115/1.4002149
    journal fristpage31013
    identifier eissn1949-2952
    keywordsComposite materials
    keywordsBone
    keywordsTissue engineering
    keywordsNanoclays
    keywordsOsteoblasts
    keywordsMechanical properties
    keywordsPorosity
    keywordsBiocompatibility
    keywordsDrying
    keywordsEngineering systems and industry applications AND Fourier transform infrared spectroscopy
    treeJournal of Nanotechnology in Engineering and Medicine:;2010:;volume( 001 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian