YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Medical Devices
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Medical Devices
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Design of a Pressure Measuring Syringe

    Source: Journal of Medical Devices:;2010:;volume( 004 ):;issue: 002::page 27528
    Author:
    Alexander Slocum
    ,
    Joan Spiegel
    ,
    Samuel Duffley
    ,
    Jaime Moreu
    ,
    Adrienne Watral
    ,
    Alexander H. Slocum
    DOI: 10.1115/1.3443323
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Endotracheal intubations are performed on thousands of patients each day. Intubation is achieved by inserting a small plastic tube down a patient’s trachea, allowing oxygen and anesthetics to be delivered directly to the lungs. The tube is held in place by inflating a small cuff on the distal tip, which also serves to seal the trachea. The use of a manometer to measure the pressure within the cuff is essential to keep the practice safe. Hyperinflation of the cuff can put too much pressure on the trachea, leading to tissue death and post-procedure patient discomfort. A hypo-inflated cuff results in a poor seal within the patient’s airway and can lead to ineffective positive pressure ventilation, or gastro-inflation, which can in turn lead to vomiting, putting the patient at risk for asphyxiation. The latter complication can cause hypoxia and death. Manometers used to measure cuff pressure are costly, cumbersome, and potentially inaccurate. A pressure measuring syringe has been designed, tested, and verified to meet physicians’ needs for a simple, low-cost pressure measurement device. New data suggest that overblown cuffs are very common during surgery (2009, Abstract 3AP1-1, presented at the European Society of Anaesthesiology, Milan, Italy). In fact, most are inflated to a pressure greater than the recommended 25 cm H2O, and past studies on patients in critical care settings corroborate these observations (Jaber, S., et al. , 2007, “Endotracheal Tube Cuff Pressure in Intensive Care Unit: The Need for Pressure Monitoring,” Intensive Care Med., 33 , pp. 917–918). A pressure-sensing device that gives physicians a tool to help avoid over- and underinflation of the endotracheal tube (ETT) cuff was able to provide an accurate, repeatable measurement of the intracuff pressure. A deterministic design process was used to develop a set of functional requirements for a pressure measuring device that accomplishes both inflation of the cuff and a simultaneous measurement of the cuff pressure. A silicone bellow inside the body of the plunger acts as a single elastomechanical measurement device, permitting a highly repeatable measurement of the intracuff pressure. The design also maintains most of the traditional syringe design in that only the plunger is modified to accommodate the bellows. The components of the syringe are also scalable in order to allow the design to be utilized for other pressure sensitive procedures. The current iteration of the syringe can accurately measure pressure within a range of 0–40 cm H2O. Prototypes for the syringe were 3D printed and tested, and silicone rubber bellows were outsourced. In the final prototoype, the plunger is injection molded. The total estimated final cost of the syringe is about $1.50, which is comparable to the cost of a typical syringe. Because of this, the pressure measuring syringe is a viable candidate for low-cost mass production. The calculated pressure-deflection relationship of the bellows was experimentally verified, further demonstrating the scalability of the design. In conclusion, a simple and cost-effective syringe manometer has been developed, which controls and measures air pressure in ETT cuffs.
    • Download: (36.16Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Design of a Pressure Measuring Syringe

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/144449
    Collections
    • Journal of Medical Devices

    Show full item record

    contributor authorAlexander Slocum
    contributor authorJoan Spiegel
    contributor authorSamuel Duffley
    contributor authorJaime Moreu
    contributor authorAdrienne Watral
    contributor authorAlexander H. Slocum
    date accessioned2017-05-09T00:40:03Z
    date available2017-05-09T00:40:03Z
    date copyrightJune, 2010
    date issued2010
    identifier issn1932-6181
    identifier otherJMDOA4-28010#027528_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/144449
    description abstractEndotracheal intubations are performed on thousands of patients each day. Intubation is achieved by inserting a small plastic tube down a patient’s trachea, allowing oxygen and anesthetics to be delivered directly to the lungs. The tube is held in place by inflating a small cuff on the distal tip, which also serves to seal the trachea. The use of a manometer to measure the pressure within the cuff is essential to keep the practice safe. Hyperinflation of the cuff can put too much pressure on the trachea, leading to tissue death and post-procedure patient discomfort. A hypo-inflated cuff results in a poor seal within the patient’s airway and can lead to ineffective positive pressure ventilation, or gastro-inflation, which can in turn lead to vomiting, putting the patient at risk for asphyxiation. The latter complication can cause hypoxia and death. Manometers used to measure cuff pressure are costly, cumbersome, and potentially inaccurate. A pressure measuring syringe has been designed, tested, and verified to meet physicians’ needs for a simple, low-cost pressure measurement device. New data suggest that overblown cuffs are very common during surgery (2009, Abstract 3AP1-1, presented at the European Society of Anaesthesiology, Milan, Italy). In fact, most are inflated to a pressure greater than the recommended 25 cm H2O, and past studies on patients in critical care settings corroborate these observations (Jaber, S., et al. , 2007, “Endotracheal Tube Cuff Pressure in Intensive Care Unit: The Need for Pressure Monitoring,” Intensive Care Med., 33 , pp. 917–918). A pressure-sensing device that gives physicians a tool to help avoid over- and underinflation of the endotracheal tube (ETT) cuff was able to provide an accurate, repeatable measurement of the intracuff pressure. A deterministic design process was used to develop a set of functional requirements for a pressure measuring device that accomplishes both inflation of the cuff and a simultaneous measurement of the cuff pressure. A silicone bellow inside the body of the plunger acts as a single elastomechanical measurement device, permitting a highly repeatable measurement of the intracuff pressure. The design also maintains most of the traditional syringe design in that only the plunger is modified to accommodate the bellows. The components of the syringe are also scalable in order to allow the design to be utilized for other pressure sensitive procedures. The current iteration of the syringe can accurately measure pressure within a range of 0–40 cm H2O. Prototypes for the syringe were 3D printed and tested, and silicone rubber bellows were outsourced. In the final prototoype, the plunger is injection molded. The total estimated final cost of the syringe is about $1.50, which is comparable to the cost of a typical syringe. Because of this, the pressure measuring syringe is a viable candidate for low-cost mass production. The calculated pressure-deflection relationship of the bellows was experimentally verified, further demonstrating the scalability of the design. In conclusion, a simple and cost-effective syringe manometer has been developed, which controls and measures air pressure in ETT cuffs.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDesign of a Pressure Measuring Syringe
    typeJournal Paper
    journal volume4
    journal issue2
    journal titleJournal of Medical Devices
    identifier doi10.1115/1.3443323
    journal fristpage27528
    identifier eissn1932-619X
    treeJournal of Medical Devices:;2010:;volume( 004 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian