YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Medical Devices
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Medical Devices
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Predictive Modeling of Transplant-Related Mortality

    Source: Journal of Medical Devices:;2010:;volume( 004 ):;issue: 002::page 27527
    Author:
    Feng Cai
    DOI: 10.1115/1.3443322
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper describes the application of machine learning approaches for predictive modeling to improve the estimation of risks for complications of allogeneic hematopoietic cell transplantation (HCT) including relapse, graft-versus-host disease, and transplant-related mortality (TRM). Clinical disease and demographic factors known to impact the outcome of HCT include: recipient and donor age, type of donor (related/unrelated), donor-recipient gender, diagnosis and disease status pre-HCT, and stem cell source (peripheral blood, marrow, and umbilical cord blood). However, biostatistical analysis of risk has only limited accuracy in estimating a given patient’s risks of serous post-HCT complications. We describe the application of standard support vector machine (SVM) classifiers for data-analytic modeling of TRM. The goal is to predict the binary output TRM (alive or dead) from a set of genetic, demographic, and clinical inputs. Classification decision rule is estimated using SVM approach appropriate for such sparse multivariate data. This study compares several feature selection techniques for modeling TRM and objectively evaluates the quality of feature selection via prediction accuracy of the corresponding SVM classifiers. In addition, we discuss methods for interpretation of multivariate SVM models.
    • Download: (29.08Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Predictive Modeling of Transplant-Related Mortality

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/144446
    Collections
    • Journal of Medical Devices

    Show full item record

    contributor authorFeng Cai
    date accessioned2017-05-09T00:40:02Z
    date available2017-05-09T00:40:02Z
    date copyrightJune, 2010
    date issued2010
    identifier issn1932-6181
    identifier otherJMDOA4-28010#027527_2.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/144446
    description abstractThis paper describes the application of machine learning approaches for predictive modeling to improve the estimation of risks for complications of allogeneic hematopoietic cell transplantation (HCT) including relapse, graft-versus-host disease, and transplant-related mortality (TRM). Clinical disease and demographic factors known to impact the outcome of HCT include: recipient and donor age, type of donor (related/unrelated), donor-recipient gender, diagnosis and disease status pre-HCT, and stem cell source (peripheral blood, marrow, and umbilical cord blood). However, biostatistical analysis of risk has only limited accuracy in estimating a given patient’s risks of serous post-HCT complications. We describe the application of standard support vector machine (SVM) classifiers for data-analytic modeling of TRM. The goal is to predict the binary output TRM (alive or dead) from a set of genetic, demographic, and clinical inputs. Classification decision rule is estimated using SVM approach appropriate for such sparse multivariate data. This study compares several feature selection techniques for modeling TRM and objectively evaluates the quality of feature selection via prediction accuracy of the corresponding SVM classifiers. In addition, we discuss methods for interpretation of multivariate SVM models.
    publisherThe American Society of Mechanical Engineers (ASME)
    titlePredictive Modeling of Transplant-Related Mortality
    typeJournal Paper
    journal volume4
    journal issue2
    journal titleJournal of Medical Devices
    identifier doi10.1115/1.3443322
    journal fristpage27527
    identifier eissn1932-619X
    treeJournal of Medical Devices:;2010:;volume( 004 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian