YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Random Field Characterization Considering Statistical Dependence for Probability Analysis and Design

    Source: Journal of Mechanical Design:;2010:;volume( 132 ):;issue: 010::page 101008
    Author:
    Zhimin Xi
    ,
    Byeng D. Youn
    ,
    Chao Hu
    DOI: 10.1115/1.4002293
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The proper orthogonal decomposition method has been employed to extract the important field signatures of random field observed in an engineering product or process. Our preliminary study found that the coefficients of the signatures are statistically uncorrelated but may be dependent. To this point, the statistical dependence of the coefficients has been ignored in the random field characterization for probability analysis and design. This paper thus proposes an effective random field characterization method that can account for the statistical dependence among the coefficients for probability analysis and design. The proposed approach has two technical contributions. The first contribution is the development of a natural approximation scheme of random field while preserving prescribed approximation accuracy. The coefficients of the signatures can be modeled as random field variables, and their statistical properties are identified using the chi-square goodness-of-fit test. Then, as the paper’s second technical contribution, the Rosenblatt transformation is employed to transform the statistically dependent random field variables into statistically independent random field variables. The number of the transformation sequences exponentially increases as the number of random field variables becomes large. It was found that improper selection of a transformation sequence among many may introduce high nonlinearity into system responses, which may result in inaccuracy in probability analysis and design. Hence, this paper proposes a novel procedure of determining an optimal sequence of the Rosenblatt transformation that introduces the least degree of nonlinearity into the system response. The proposed random field characterization can be integrated with any advanced probability analysis method, such as the eigenvector dimension reduction method or polynomial chaos expansion method. Three structural examples, including a microelectromechanical system bistable mechanism, are used to demonstrate the effectiveness of the proposed approach. The results show that the statistical dependence in the random field characterization cannot be neglected during probability analysis and design. Moreover, it is shown that the proposed random field approach is very accurate and efficient.
    keyword(s): Probability , Design , Modeling AND Materials properties ,
    • Download: (1.367Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Random Field Characterization Considering Statistical Dependence for Probability Analysis and Design

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/144149
    Collections
    • Journal of Mechanical Design

    Show full item record

    contributor authorZhimin Xi
    contributor authorByeng D. Youn
    contributor authorChao Hu
    date accessioned2017-05-09T00:39:31Z
    date available2017-05-09T00:39:31Z
    date copyrightOctober, 2010
    date issued2010
    identifier issn1050-0472
    identifier otherJMDEDB-27932#101008_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/144149
    description abstractThe proper orthogonal decomposition method has been employed to extract the important field signatures of random field observed in an engineering product or process. Our preliminary study found that the coefficients of the signatures are statistically uncorrelated but may be dependent. To this point, the statistical dependence of the coefficients has been ignored in the random field characterization for probability analysis and design. This paper thus proposes an effective random field characterization method that can account for the statistical dependence among the coefficients for probability analysis and design. The proposed approach has two technical contributions. The first contribution is the development of a natural approximation scheme of random field while preserving prescribed approximation accuracy. The coefficients of the signatures can be modeled as random field variables, and their statistical properties are identified using the chi-square goodness-of-fit test. Then, as the paper’s second technical contribution, the Rosenblatt transformation is employed to transform the statistically dependent random field variables into statistically independent random field variables. The number of the transformation sequences exponentially increases as the number of random field variables becomes large. It was found that improper selection of a transformation sequence among many may introduce high nonlinearity into system responses, which may result in inaccuracy in probability analysis and design. Hence, this paper proposes a novel procedure of determining an optimal sequence of the Rosenblatt transformation that introduces the least degree of nonlinearity into the system response. The proposed random field characterization can be integrated with any advanced probability analysis method, such as the eigenvector dimension reduction method or polynomial chaos expansion method. Three structural examples, including a microelectromechanical system bistable mechanism, are used to demonstrate the effectiveness of the proposed approach. The results show that the statistical dependence in the random field characterization cannot be neglected during probability analysis and design. Moreover, it is shown that the proposed random field approach is very accurate and efficient.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleRandom Field Characterization Considering Statistical Dependence for Probability Analysis and Design
    typeJournal Paper
    journal volume132
    journal issue10
    journal titleJournal of Mechanical Design
    identifier doi10.1115/1.4002293
    journal fristpage101008
    identifier eissn1528-9001
    keywordsProbability
    keywordsDesign
    keywordsModeling AND Materials properties
    treeJournal of Mechanical Design:;2010:;volume( 132 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian