YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Hybrid Sensitivity Analysis for Use in Early Design

    Source: Journal of Mechanical Design:;2010:;volume( 132 ):;issue: 011::page 111007
    Author:
    Ryan S. Hutcheson
    ,
    Daniel A. McAdams
    DOI: 10.1115/1.4001408
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Sensitivity analyses are frequently used during the design of engineering systems to qualify and quantify the effect of parametric variation in the performance of a system. Two primary types of sensitivity analyses are generally used: local and global. Local analyses, generally involving derivative-based measures, have a significantly lower computational burden than global analyses but only provide measures of sensitivity around a nominal point. Global analyses, generally performed with a Monte Carlo sampling approach, and variation-based measures provide a complete description of sensitivity but incur a large computational burden and require information regarding the distributions of the design parameters in a concept. Local analyses are generally suited to the early stages of design when parametric information is limited, and a large number of concepts must be evaluated (necessitating a light computational burden). Global analyses are more suited to the later stages of design when more information about parametric distributions is available and fewer concepts are under consideration. Current derivative-based local approaches provide a different and incompatible set of measures than a global variation-based analysis. This makes a direct comparison of local to global measures ill posed. To reconcile local and global sensitivity analyses, a hybrid local variation-based sensitivity (HyVar) approach is presented. This approach has a similar computational burden to a local approach but produces measures or percentage contributions. The HyVar approach is directly comparable to global variation-based approaches. In this paper, the HyVar sensitivity analysis method is developed in the context of a functional based behavioral modeling framework. An example application of the method is presented along with a summary of results produced from a more comprehensive example.
    keyword(s): Design , Sensitivity analysis , Modeling AND Project tasks ,
    • Download: (434.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Hybrid Sensitivity Analysis for Use in Early Design

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/144131
    Collections
    • Journal of Mechanical Design

    Show full item record

    contributor authorRyan S. Hutcheson
    contributor authorDaniel A. McAdams
    date accessioned2017-05-09T00:39:29Z
    date available2017-05-09T00:39:29Z
    date copyrightNovember, 2010
    date issued2010
    identifier issn1050-0472
    identifier otherJMDEDB-27934#111007_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/144131
    description abstractSensitivity analyses are frequently used during the design of engineering systems to qualify and quantify the effect of parametric variation in the performance of a system. Two primary types of sensitivity analyses are generally used: local and global. Local analyses, generally involving derivative-based measures, have a significantly lower computational burden than global analyses but only provide measures of sensitivity around a nominal point. Global analyses, generally performed with a Monte Carlo sampling approach, and variation-based measures provide a complete description of sensitivity but incur a large computational burden and require information regarding the distributions of the design parameters in a concept. Local analyses are generally suited to the early stages of design when parametric information is limited, and a large number of concepts must be evaluated (necessitating a light computational burden). Global analyses are more suited to the later stages of design when more information about parametric distributions is available and fewer concepts are under consideration. Current derivative-based local approaches provide a different and incompatible set of measures than a global variation-based analysis. This makes a direct comparison of local to global measures ill posed. To reconcile local and global sensitivity analyses, a hybrid local variation-based sensitivity (HyVar) approach is presented. This approach has a similar computational burden to a local approach but produces measures or percentage contributions. The HyVar approach is directly comparable to global variation-based approaches. In this paper, the HyVar sensitivity analysis method is developed in the context of a functional based behavioral modeling framework. An example application of the method is presented along with a summary of results produced from a more comprehensive example.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Hybrid Sensitivity Analysis for Use in Early Design
    typeJournal Paper
    journal volume132
    journal issue11
    journal titleJournal of Mechanical Design
    identifier doi10.1115/1.4001408
    journal fristpage111007
    identifier eissn1528-9001
    keywordsDesign
    keywordsSensitivity analysis
    keywordsModeling AND Project tasks
    treeJournal of Mechanical Design:;2010:;volume( 132 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian