| contributor author | Seounghyun Ham | |
| contributor author | John Wentz | |
| contributor author | Shiv G. Kapoor | |
| contributor author | Richard E. DeVor | |
| date accessioned | 2017-05-09T00:39:24Z | |
| date available | 2017-05-09T00:39:24Z | |
| date copyright | February, 2010 | |
| date issued | 2010 | |
| identifier issn | 1087-1357 | |
| identifier other | JMSEFK-28313#011006_1.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/144087 | |
| description abstract | Microfiltration is an in-process recycling method that shows great potential to extend fluid life and reduce bacterial concentrations in synthetic and semisynthetic metalworking fluids. The primary problem facing the use of microfiltration is membrane fouling, which is the blocking of membrane pores causing reduced flux. In this paper a fluid dynamic model of partial and complete blocking in sintered alumina membranes is developed that includes hydrodynamic, electrostatic, and Brownian forces. Model simulations are employed to study the impact of electrostatic and Brownian motion forces on the progression of partial blocking. The simulations also examine the effects of fluid velocity, particle size, and particle surface potential. The inclusion of electrostatic and Brownian forces is shown to significantly impact the progression of the partial blocking mechanism. The addition of a strong interparticle electrostatic force is shown to eliminate the partial blocking build-up of small particles due to the presence of the repulsive forces between the particles. As a result, the time to complete blocking of the test pore was lengthened, suggesting that flux decline is reduced in the presence of electrostatic forces. The Brownian motion is shown to have a large impact at low fluid velocities. The most effective parameter set is a low fluid velocity, small particle sizes, high microemulsion surface potential, and high membrane surface potential. | |
| publisher | The American Society of Mechanical Engineers (ASME) | |
| title | The Impact of Surface Forces on Particle Flow and Membrane Fouling in the Microfiltration of Metalworking Fluids | |
| type | Journal Paper | |
| journal volume | 132 | |
| journal issue | 1 | |
| journal title | Journal of Manufacturing Science and Engineering | |
| identifier doi | 10.1115/1.4000714 | |
| journal fristpage | 11006 | |
| identifier eissn | 1528-8935 | |
| keywords | Force | |
| keywords | Fluids | |
| keywords | Particulate matter | |
| keywords | Membranes | |
| keywords | Simulation | |
| keywords | Brownian motion | |
| keywords | Engineering simulation AND Microfiltration | |
| tree | Journal of Manufacturing Science and Engineering:;2010:;volume( 132 ):;issue: 001 | |
| contenttype | Fulltext | |