YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Online Degradation Assessment and Adaptive Fault Detection Using Modified Hidden Markov Model

    Source: Journal of Manufacturing Science and Engineering:;2010:;volume( 132 ):;issue: 002::page 21010
    Author:
    Seungchul Lee
    ,
    Lin Li
    ,
    Jun Ni
    DOI: 10.1115/1.4001247
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Online condition monitoring and diagnosis systems play an important role in the modern manufacturing industry. This paper presents a novel method to diagnose the degradation processes of multiple failure modes using a modified hidden Markov model (MHMM) with variable state space. The proposed MHMM is combined with statistical process control to quickly detect the occurrence of an unknown fault. This method allows the state space of a hidden Markov model to be adjusted and updated with the identification of new states. Hence, the online degradation assessment and adaptive fault diagnosis can be simultaneously obtained. Experimental results in a turning process illustrate that the tool wear state can be successfully detected, and previously unknown tool wear processes can be identified at the early stages using the MHMM.
    keyword(s): Wear , Statistical process control , Quality control charts , Algorithms , Failure , Flaw detection , Patient diagnosis , Probability , Signals , State estimation , Force , Condition monitoring , Cutting , Manufacturing industry , Fault diagnosis , Machinery AND Coolants ,
    • Download: (1.452Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Online Degradation Assessment and Adaptive Fault Detection Using Modified Hidden Markov Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/144074
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorSeungchul Lee
    contributor authorLin Li
    contributor authorJun Ni
    date accessioned2017-05-09T00:39:23Z
    date available2017-05-09T00:39:23Z
    date copyrightApril, 2010
    date issued2010
    identifier issn1087-1357
    identifier otherJMSEFK-28344#021010_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/144074
    description abstractOnline condition monitoring and diagnosis systems play an important role in the modern manufacturing industry. This paper presents a novel method to diagnose the degradation processes of multiple failure modes using a modified hidden Markov model (MHMM) with variable state space. The proposed MHMM is combined with statistical process control to quickly detect the occurrence of an unknown fault. This method allows the state space of a hidden Markov model to be adjusted and updated with the identification of new states. Hence, the online degradation assessment and adaptive fault diagnosis can be simultaneously obtained. Experimental results in a turning process illustrate that the tool wear state can be successfully detected, and previously unknown tool wear processes can be identified at the early stages using the MHMM.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleOnline Degradation Assessment and Adaptive Fault Detection Using Modified Hidden Markov Model
    typeJournal Paper
    journal volume132
    journal issue2
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.4001247
    journal fristpage21010
    identifier eissn1528-8935
    keywordsWear
    keywordsStatistical process control
    keywordsQuality control charts
    keywordsAlgorithms
    keywordsFailure
    keywordsFlaw detection
    keywordsPatient diagnosis
    keywordsProbability
    keywordsSignals
    keywordsState estimation
    keywordsForce
    keywordsCondition monitoring
    keywordsCutting
    keywordsManufacturing industry
    keywordsFault diagnosis
    keywordsMachinery AND Coolants
    treeJournal of Manufacturing Science and Engineering:;2010:;volume( 132 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian