YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Identification of Material Constitutive Laws for Machining—Part II: Generation of the Constitutive Data and Validation of the Constitutive Law

    Source: Journal of Manufacturing Science and Engineering:;2010:;volume( 132 ):;issue: 005::page 51009
    Author:
    Bin Shi
    ,
    Nejah Tounsi
    ,
    Helmi Attia
    DOI: 10.1115/1.4002455
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper presents an integral methodology to obtain a wide range of constitutive data required for the identification of the constitutive equation used in simulating cutting processes. This methodology is based on combining the distributed primary zone deformation (DPZD) model developed in Part I (, 2010, ASME J. Manuf. Sci. Eng., 132, p. 051008.) of this study with quasi-static indentation (QSI) tests, orthogonal cutting tests at room temperature (RT) and high temperature. The QSI tests are used to capture the material properties in the quasi-static conditions, which solve the unstable solutions for the coefficients of the constitutive law. The RT cutting tests are designed to fulfill the assumptions embedded in the developed DPZD model in order to provide the distributed constitutive data encountered in the primary shear zone. To capture the material behavior in the secondary shear zone, the orthogonal cutting tests with a laser preheating system are designed to raise the temperature in the primary zone to the level encountered in the secondary zone. As an application of the generated constitutive data, the Johnson–Cook model is identified for Inconel 718. This constitutive law is further validated using high speed split Hopkinson pressure bar tests and orthogonal cutting tests combined with finite element simulations. In comparison with the previous approaches reported in the open literature, the developed DPZD model and methodology significantly improve the accuracy of the simulation results.
    keyword(s): Temperature , Cutting , Equations AND Machining ,
    • Download: (1022.Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Identification of Material Constitutive Laws for Machining—Part II: Generation of the Constitutive Data and Validation of the Constitutive Law

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/144003
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorBin Shi
    contributor authorNejah Tounsi
    contributor authorHelmi Attia
    date accessioned2017-05-09T00:39:15Z
    date available2017-05-09T00:39:15Z
    date copyrightOctober, 2010
    date issued2010
    identifier issn1087-1357
    identifier otherJMSEFK-28406#051009_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/144003
    description abstractThis paper presents an integral methodology to obtain a wide range of constitutive data required for the identification of the constitutive equation used in simulating cutting processes. This methodology is based on combining the distributed primary zone deformation (DPZD) model developed in Part I (, 2010, ASME J. Manuf. Sci. Eng., 132, p. 051008.) of this study with quasi-static indentation (QSI) tests, orthogonal cutting tests at room temperature (RT) and high temperature. The QSI tests are used to capture the material properties in the quasi-static conditions, which solve the unstable solutions for the coefficients of the constitutive law. The RT cutting tests are designed to fulfill the assumptions embedded in the developed DPZD model in order to provide the distributed constitutive data encountered in the primary shear zone. To capture the material behavior in the secondary shear zone, the orthogonal cutting tests with a laser preheating system are designed to raise the temperature in the primary zone to the level encountered in the secondary zone. As an application of the generated constitutive data, the Johnson–Cook model is identified for Inconel 718. This constitutive law is further validated using high speed split Hopkinson pressure bar tests and orthogonal cutting tests combined with finite element simulations. In comparison with the previous approaches reported in the open literature, the developed DPZD model and methodology significantly improve the accuracy of the simulation results.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleIdentification of Material Constitutive Laws for Machining—Part II: Generation of the Constitutive Data and Validation of the Constitutive Law
    typeJournal Paper
    journal volume132
    journal issue5
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.4002455
    journal fristpage51009
    identifier eissn1528-8935
    keywordsTemperature
    keywordsCutting
    keywordsEquations AND Machining
    treeJournal of Manufacturing Science and Engineering:;2010:;volume( 132 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian