YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    In-Situ Shrinkage Sensor for Injection Molding

    Source: Journal of Manufacturing Science and Engineering:;2010:;volume( 132 ):;issue: 006::page 64503
    Author:
    Rahul R. Panchal
    ,
    David O. Kazmer
    DOI: 10.1115/1.4002765
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Dimensional consistency is a critical attribute for injection molded part quality and is highly dependent on the polymer morphology, the thermal expansion, and various processing parameters. The dimensional shrinkage can be estimated by knowing the pressure-volume-temperature behavior of the polymer but with limited accuracy. There are various process monitoring systems available in the market; none of which has the capability of directly monitoring and controlling the real time shrinkage and part dimensions online. With a view to measuring in-mold shrinkage, a button cell type in-mold shrinkage sensor was developed, validated, and compared against the traditional shrinkage prediction and estimation methods. The shrinkage sensor consists of an elastic diaphragm instrumented with strain gages connected in a full bridge circuit. The sensor is placed beneath the movable pin that is protruded into the mold cavity and remains in contact with the sensor diaphragm. The sensor diaphragm is deflected due to the melt pressure acting on the pin into the mold cavity and is retracted back toward its original position as the melt solidifies and shrinks away from the mold cavity wall. The sensor signals acquired during each molding cycle were analyzed to validate the sensor performance in a design of experiments as a function of packing pressure, melt temperature, cooling time, and coolant temperature. The regression results indicate that the shrinkage sensor outperforms cavity pressure transducers and other methods of predicting the in-mold shrinkage. For polypropylene, the shrinkage sensor is able to measure the shrinkage to an average accuracy of 0.01 mm for a molded part with a nominal thickness of 2.5 mm. The coefficient of correlation, R2, between the sensor’s final positions to the final part thickness was 0.921 for the in-mold shrinkage sensor. Other dimension prediction methods had lower correlation coefficients.
    keyword(s): Pressure , Sensors , Shrinkage (Materials) , Cavities , Cycles , Molding , Thickness , Injection molding , Temperature AND Design ,
    • Download: (358.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      In-Situ Shrinkage Sensor for Injection Molding

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/143991
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorRahul R. Panchal
    contributor authorDavid O. Kazmer
    date accessioned2017-05-09T00:39:14Z
    date available2017-05-09T00:39:14Z
    date copyrightDecember, 2010
    date issued2010
    identifier issn1087-1357
    identifier otherJMSEFK-28418#064503_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/143991
    description abstractDimensional consistency is a critical attribute for injection molded part quality and is highly dependent on the polymer morphology, the thermal expansion, and various processing parameters. The dimensional shrinkage can be estimated by knowing the pressure-volume-temperature behavior of the polymer but with limited accuracy. There are various process monitoring systems available in the market; none of which has the capability of directly monitoring and controlling the real time shrinkage and part dimensions online. With a view to measuring in-mold shrinkage, a button cell type in-mold shrinkage sensor was developed, validated, and compared against the traditional shrinkage prediction and estimation methods. The shrinkage sensor consists of an elastic diaphragm instrumented with strain gages connected in a full bridge circuit. The sensor is placed beneath the movable pin that is protruded into the mold cavity and remains in contact with the sensor diaphragm. The sensor diaphragm is deflected due to the melt pressure acting on the pin into the mold cavity and is retracted back toward its original position as the melt solidifies and shrinks away from the mold cavity wall. The sensor signals acquired during each molding cycle were analyzed to validate the sensor performance in a design of experiments as a function of packing pressure, melt temperature, cooling time, and coolant temperature. The regression results indicate that the shrinkage sensor outperforms cavity pressure transducers and other methods of predicting the in-mold shrinkage. For polypropylene, the shrinkage sensor is able to measure the shrinkage to an average accuracy of 0.01 mm for a molded part with a nominal thickness of 2.5 mm. The coefficient of correlation, R2, between the sensor’s final positions to the final part thickness was 0.921 for the in-mold shrinkage sensor. Other dimension prediction methods had lower correlation coefficients.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleIn-Situ Shrinkage Sensor for Injection Molding
    typeJournal Paper
    journal volume132
    journal issue6
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.4002765
    journal fristpage64503
    identifier eissn1528-8935
    keywordsPressure
    keywordsSensors
    keywordsShrinkage (Materials)
    keywordsCavities
    keywordsCycles
    keywordsMolding
    keywordsThickness
    keywordsInjection molding
    keywordsTemperature AND Design
    treeJournal of Manufacturing Science and Engineering:;2010:;volume( 132 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian