YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Enhancement of Adaptability of Parallel Kinematic Machines With an Adjustable Platform

    Source: Journal of Manufacturing Science and Engineering:;2010:;volume( 132 ):;issue: 006::page 61016
    Author:
    Z. M. Bi
    ,
    B. Kang
    DOI: 10.1115/1.4003120
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The design of an industrial robot involves a number of conflicting objectives in general. A parallel kinematic machine (PKM) is known to achieve high precision and heavy load capacity but with the sacrifice of large workspace and high dexterity. Therefore, existing PKMs are mostly dedicated to a specific task with relatively poor adaptability to task variations. In this paper, the concept of an adjustable platform is proposed to enhance the adaptability of a PKM for various tasks. It is demonstrated that the adjustment of the dimensions of a base platform or end-effector platform has a significant impact on the performance of a PKM including its workspace and overall stiffness distribution. Both offline and online adjustment modes are presented. The offline adjustment brings a new dimension for reconfigurability and thus increases the versatility of a parallel robot for different tasks. The online adjustment turns a parallel robot into a redundant PKM, and therefore its overall performance against task requirements can be improved. A planar PKM and a Stewart robot with an adjustable platform are used as case studies in order to demonstrate the advantages of the proposed concept.
    keyword(s): Dimensions , Robots , Redundancy (Engineering) , End effectors , Stiffness , Machinery , Motion AND Design ,
    • Download: (1.095Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Enhancement of Adaptability of Parallel Kinematic Machines With an Adjustable Platform

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/143986
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorZ. M. Bi
    contributor authorB. Kang
    date accessioned2017-05-09T00:39:13Z
    date available2017-05-09T00:39:13Z
    date copyrightDecember, 2010
    date issued2010
    identifier issn1087-1357
    identifier otherJMSEFK-28418#061016_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/143986
    description abstractThe design of an industrial robot involves a number of conflicting objectives in general. A parallel kinematic machine (PKM) is known to achieve high precision and heavy load capacity but with the sacrifice of large workspace and high dexterity. Therefore, existing PKMs are mostly dedicated to a specific task with relatively poor adaptability to task variations. In this paper, the concept of an adjustable platform is proposed to enhance the adaptability of a PKM for various tasks. It is demonstrated that the adjustment of the dimensions of a base platform or end-effector platform has a significant impact on the performance of a PKM including its workspace and overall stiffness distribution. Both offline and online adjustment modes are presented. The offline adjustment brings a new dimension for reconfigurability and thus increases the versatility of a parallel robot for different tasks. The online adjustment turns a parallel robot into a redundant PKM, and therefore its overall performance against task requirements can be improved. A planar PKM and a Stewart robot with an adjustable platform are used as case studies in order to demonstrate the advantages of the proposed concept.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEnhancement of Adaptability of Parallel Kinematic Machines With an Adjustable Platform
    typeJournal Paper
    journal volume132
    journal issue6
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.4003120
    journal fristpage61016
    identifier eissn1528-8935
    keywordsDimensions
    keywordsRobots
    keywordsRedundancy (Engineering)
    keywordsEnd effectors
    keywordsStiffness
    keywordsMachinery
    keywordsMotion AND Design
    treeJournal of Manufacturing Science and Engineering:;2010:;volume( 132 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian