YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Melting of Phase Change Materials With Volume Change in Metal Foams

    Source: Journal of Heat Transfer:;2010:;volume( 132 ):;issue: 006::page 62301
    Author:
    Zhen Yang
    ,
    Suresh V. Garimella
    DOI: 10.1115/1.4000747
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Melting of phase change materials (PCMs) embedded in metal foams is investigated. The two-temperature model developed accounts for volume change in the PCM upon melting. Volume-averaged mass and momentum equations are solved, with the Brinkman–Forchheimer extension to Darcy’s law employed to model the porous-medium resistance. Local thermal equilibrium does not hold due to the large difference in thermal diffusivity between the metal foam and the PCM. Therefore, a two-temperature approach is adopted, with the heat transfer between the metal foam and the PCM being coupled by means of an interstitial Nusselt number. The enthalpy method is applied to account for phase change. The governing equations are solved using a finite-volume approach. Effects of volume shrinkage/expansion are considered for different interstitial heat transfer rates between the foam and PCM. The detailed behavior of the melting region as a function of buoyancy-driven convection and interstitial Nusselt number is analyzed. For strong interstitial heat transfer, the melting region is significantly reduced in extent and the melting process is greatly enhanced as is heat transfer from the wall; the converse applies for weak interstitial heat transfer. The melting process at a low interstitial Nusselt number is significantly influenced by melt convection, while the behavior is dominated by conduction at high interstitial Nusselt numbers. Volume shrinkage/expansion due to phase change induces an added flow, which affects the PCM melting rate.
    keyword(s): Heat transfer , Melting , Metal foams , Temperature AND Convection ,
    • Download: (1.056Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Melting of Phase Change Materials With Volume Change in Metal Foams

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/143845
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorZhen Yang
    contributor authorSuresh V. Garimella
    date accessioned2017-05-09T00:38:56Z
    date available2017-05-09T00:38:56Z
    date copyrightJune, 2010
    date issued2010
    identifier issn0022-1481
    identifier otherJHTRAO-27889#062301_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/143845
    description abstractMelting of phase change materials (PCMs) embedded in metal foams is investigated. The two-temperature model developed accounts for volume change in the PCM upon melting. Volume-averaged mass and momentum equations are solved, with the Brinkman–Forchheimer extension to Darcy’s law employed to model the porous-medium resistance. Local thermal equilibrium does not hold due to the large difference in thermal diffusivity between the metal foam and the PCM. Therefore, a two-temperature approach is adopted, with the heat transfer between the metal foam and the PCM being coupled by means of an interstitial Nusselt number. The enthalpy method is applied to account for phase change. The governing equations are solved using a finite-volume approach. Effects of volume shrinkage/expansion are considered for different interstitial heat transfer rates between the foam and PCM. The detailed behavior of the melting region as a function of buoyancy-driven convection and interstitial Nusselt number is analyzed. For strong interstitial heat transfer, the melting region is significantly reduced in extent and the melting process is greatly enhanced as is heat transfer from the wall; the converse applies for weak interstitial heat transfer. The melting process at a low interstitial Nusselt number is significantly influenced by melt convection, while the behavior is dominated by conduction at high interstitial Nusselt numbers. Volume shrinkage/expansion due to phase change induces an added flow, which affects the PCM melting rate.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMelting of Phase Change Materials With Volume Change in Metal Foams
    typeJournal Paper
    journal volume132
    journal issue6
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4000747
    journal fristpage62301
    identifier eissn1528-8943
    keywordsHeat transfer
    keywordsMelting
    keywordsMetal foams
    keywordsTemperature AND Convection
    treeJournal of Heat Transfer:;2010:;volume( 132 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian