YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Scale Analysis Based Theoretical Force Balance Model for Critical Heat Flux (CHF) During Saturated Flow Boiling in Microchannels and Minichannels

    Source: Journal of Heat Transfer:;2010:;volume( 132 ):;issue: 008::page 81501
    Author:
    Satish G. Kandlikar
    DOI: 10.1115/1.4001124
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Accurate prediction of critical heat flux (CHF) in microchannels and minichannels is of great interest in estimating the safe operational limits of cooling systems employing flow boiling. Scale analysis is applied to identify the relevant forces leading to the CHF condition. Using these forces, a local parameter model is developed to predict the flow boiling CHF. The theoretical model is an extension of an earlier pool boiling CHF model and incorporates force balance among the evaporation momentum, surface tension, inertia, and viscous forces. Weber number, capillary number, and a new nondimensional group introduced earlier by (2004, “Heat Transfer Mechanisms During Flow Boiling in Microchannels,” ASME J. Heat Transfer, 126, pp. 8–16), K2, representing the ratio of evaporation momentum to surface tension forces, emerged as main groups in quantifying the narrow channel effects on CHF. The constants in the model were calculated from the available experimental data. The mean error with ten data sets is 19.7% with 76% data falling within ±30% error band and 93% within ±50% error band. The length to diameter ratio emerged as a parameter indicating a stepwise regime change. The success of the model indicates that flow boiling CHF can be modeled as a local phenomenon and the scale analysis is able to reveal important information regarding fundamental mechanisms leading to the CHF condition.
    • Download: (972.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Scale Analysis Based Theoretical Force Balance Model for Critical Heat Flux (CHF) During Saturated Flow Boiling in Microchannels and Minichannels

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/143802
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorSatish G. Kandlikar
    date accessioned2017-05-09T00:38:51Z
    date available2017-05-09T00:38:51Z
    date copyrightAugust, 2010
    date issued2010
    identifier issn0022-1481
    identifier otherJHTRAO-27893#081501_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/143802
    description abstractAccurate prediction of critical heat flux (CHF) in microchannels and minichannels is of great interest in estimating the safe operational limits of cooling systems employing flow boiling. Scale analysis is applied to identify the relevant forces leading to the CHF condition. Using these forces, a local parameter model is developed to predict the flow boiling CHF. The theoretical model is an extension of an earlier pool boiling CHF model and incorporates force balance among the evaporation momentum, surface tension, inertia, and viscous forces. Weber number, capillary number, and a new nondimensional group introduced earlier by (2004, “Heat Transfer Mechanisms During Flow Boiling in Microchannels,” ASME J. Heat Transfer, 126, pp. 8–16), K2, representing the ratio of evaporation momentum to surface tension forces, emerged as main groups in quantifying the narrow channel effects on CHF. The constants in the model were calculated from the available experimental data. The mean error with ten data sets is 19.7% with 76% data falling within ±30% error band and 93% within ±50% error band. The length to diameter ratio emerged as a parameter indicating a stepwise regime change. The success of the model indicates that flow boiling CHF can be modeled as a local phenomenon and the scale analysis is able to reveal important information regarding fundamental mechanisms leading to the CHF condition.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Scale Analysis Based Theoretical Force Balance Model for Critical Heat Flux (CHF) During Saturated Flow Boiling in Microchannels and Minichannels
    typeJournal Paper
    journal volume132
    journal issue8
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4001124
    journal fristpage81501
    identifier eissn1528-8943
    treeJournal of Heat Transfer:;2010:;volume( 132 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian