YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Laminar Boundary Layer Development Around a Circular Cylinder: Fluid Flow and Heat-Mass Transfer Characteristics

    Source: Journal of Heat Transfer:;2010:;volume( 132 ):;issue: 012::page 121703
    Author:
    A. Alper Ozalp
    ,
    Ibrahim Dincer
    DOI: 10.1115/1.4002288
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper presents a comprehensive computational work on the hydrodynamic, thermal, and mass transfer characteristics of a circular cylinder, subjected to confined flow at the cylinder Reynolds number of Red=40. As the two-dimensional, steady and incompressible momentum and energy equations are solved using ANSYS-CFX (version 11.0), the moisture distributions are computed by a new alternating direction implicit method based software. The significant results, highlighting the influence of blockage (β=0.200–0.800) on the flow and heat transfer mechanism and clarifying the combined roles of β and moisture diffusivity (D=1×10−8–1×10−5 m2/s) on the mass transfer behavior, are obtained for practical applications. It is shown that the blockage augments the friction coefficients (Cf) and Nusselt numbers (Nu) on the complete cylinder surface, where the average Nu are evaluated as Nuave=3.66, 4.05, 4.97, and 6.51 for β=0.200, 0.333, 0.571, and 0.800. Moreover, the blockage shifts separation (θs) and maximum Cf locations (θCf−max) downstream to the positions of θs=54.10, 50.20, 41.98, and 37.30 deg and θCf−max=51.5, 53.4, 74.9, and 85.4 deg. The highest blockage of β=0.800 encourages the downstream backward velocity values, which as a consequence disturbs the boundary layer and weakens the fluid-solid contact. The center and average moisture contents differ significantly at the beginning of drying process, but in the last 5% of the drying period they vary only by 1.6%. Additionally, higher blockage augments mass transfer coefficients (hm) on the overall cylinder surface; however, the growing rate of back face mass transfer coefficients (hm−bf) is dominant to that of the front face values (hm−ff), with the interpreting ratios of h¯m−bf/h¯m=0.50 and 0.57 and h¯m−ff/h¯m=1.50 and 1.43 for β=0.200 and 0.800.
    keyword(s): Fluid dynamics , Flow (Dynamics) , Heat , Mass transfer , Heat transfer , Separation (Technology) , Drying , Boundary layers , Circular cylinders , Cylinders , Mechanisms , Computation , Fluids , Equations , Momentum , Temperature AND Friction ,
    • Download: (2.517Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Laminar Boundary Layer Development Around a Circular Cylinder: Fluid Flow and Heat-Mass Transfer Characteristics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/143714
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorA. Alper Ozalp
    contributor authorIbrahim Dincer
    date accessioned2017-05-09T00:38:42Z
    date available2017-05-09T00:38:42Z
    date copyrightDecember, 2010
    date issued2010
    identifier issn0022-1481
    identifier otherJHTRAO-27902#121703_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/143714
    description abstractThis paper presents a comprehensive computational work on the hydrodynamic, thermal, and mass transfer characteristics of a circular cylinder, subjected to confined flow at the cylinder Reynolds number of Red=40. As the two-dimensional, steady and incompressible momentum and energy equations are solved using ANSYS-CFX (version 11.0), the moisture distributions are computed by a new alternating direction implicit method based software. The significant results, highlighting the influence of blockage (β=0.200–0.800) on the flow and heat transfer mechanism and clarifying the combined roles of β and moisture diffusivity (D=1×10−8–1×10−5 m2/s) on the mass transfer behavior, are obtained for practical applications. It is shown that the blockage augments the friction coefficients (Cf) and Nusselt numbers (Nu) on the complete cylinder surface, where the average Nu are evaluated as Nuave=3.66, 4.05, 4.97, and 6.51 for β=0.200, 0.333, 0.571, and 0.800. Moreover, the blockage shifts separation (θs) and maximum Cf locations (θCf−max) downstream to the positions of θs=54.10, 50.20, 41.98, and 37.30 deg and θCf−max=51.5, 53.4, 74.9, and 85.4 deg. The highest blockage of β=0.800 encourages the downstream backward velocity values, which as a consequence disturbs the boundary layer and weakens the fluid-solid contact. The center and average moisture contents differ significantly at the beginning of drying process, but in the last 5% of the drying period they vary only by 1.6%. Additionally, higher blockage augments mass transfer coefficients (hm) on the overall cylinder surface; however, the growing rate of back face mass transfer coefficients (hm−bf) is dominant to that of the front face values (hm−ff), with the interpreting ratios of h¯m−bf/h¯m=0.50 and 0.57 and h¯m−ff/h¯m=1.50 and 1.43 for β=0.200 and 0.800.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleLaminar Boundary Layer Development Around a Circular Cylinder: Fluid Flow and Heat-Mass Transfer Characteristics
    typeJournal Paper
    journal volume132
    journal issue12
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4002288
    journal fristpage121703
    identifier eissn1528-8943
    keywordsFluid dynamics
    keywordsFlow (Dynamics)
    keywordsHeat
    keywordsMass transfer
    keywordsHeat transfer
    keywordsSeparation (Technology)
    keywordsDrying
    keywordsBoundary layers
    keywordsCircular cylinders
    keywordsCylinders
    keywordsMechanisms
    keywordsComputation
    keywordsFluids
    keywordsEquations
    keywordsMomentum
    keywordsTemperature AND Friction
    treeJournal of Heat Transfer:;2010:;volume( 132 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian