YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fuel Cell Science and Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fuel Cell Science and Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effects of Electrode Microstructure on Intermediate Temperature Solid Oxide Fuel Cell Performance

    Source: Journal of Fuel Cell Science and Technology:;2010:;volume( 007 ):;issue: 005::page 51015
    Author:
    Edward J. Naimaster
    ,
    A. K. Sleiti
    DOI: 10.1115/1.4000683
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this study, the effects of electrode microstructure and electrolyte parameters on intermediate temperature solid oxide fuel cell (ITSOFC) performance were investigated using a one-dimensional solid oxide fuel cell model from the Pacific Northwest National Laboratory (PNNL). The activation overpotential was investigated through the exchange current density term, which is dependent on the cathode activation energy, the cathode porosity, and the pore size and grain size at the cathode triple phase boundary. The cathode pore size, grain size, and porosity were not integrated in the PNNL model, therefore, an analytical solution for exchange current density from and (2005, “Geometric Modeling of the Triple-Phase Boundary in Solid Oxide Fuel Cells,” J. Power Sources, 140, pp. 297–303) was utilized to optimize their effects on performance. Through parametric evaluation and optimization of the electrode microstructure parameters, the activation overpotential was decreased by 29% and the overall ITSOFC maximum power density was increased by almost 400% from the benchmark PNNL case. The effects and importance of electrode microstructure parameters on ITSOFC performance were defined. Optimization of such parameters will be the key in creating viable ITSOFC systems. Although this was deemed successful for this project, future research should be focused on numerically quantifying and modeling the electrode microstructure in two- and three-dimensions for more accurate results, as the electrode microstructure may be highly multidimensional in nature.
    • Download: (1.542Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effects of Electrode Microstructure on Intermediate Temperature Solid Oxide Fuel Cell Performance

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/143594
    Collections
    • Journal of Fuel Cell Science and Technology

    Show full item record

    contributor authorEdward J. Naimaster
    contributor authorA. K. Sleiti
    date accessioned2017-05-09T00:38:26Z
    date available2017-05-09T00:38:26Z
    date copyrightOctober, 2010
    date issued2010
    identifier issn2381-6872
    identifier otherJFCSAU-28944#051015_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/143594
    description abstractIn this study, the effects of electrode microstructure and electrolyte parameters on intermediate temperature solid oxide fuel cell (ITSOFC) performance were investigated using a one-dimensional solid oxide fuel cell model from the Pacific Northwest National Laboratory (PNNL). The activation overpotential was investigated through the exchange current density term, which is dependent on the cathode activation energy, the cathode porosity, and the pore size and grain size at the cathode triple phase boundary. The cathode pore size, grain size, and porosity were not integrated in the PNNL model, therefore, an analytical solution for exchange current density from and (2005, “Geometric Modeling of the Triple-Phase Boundary in Solid Oxide Fuel Cells,” J. Power Sources, 140, pp. 297–303) was utilized to optimize their effects on performance. Through parametric evaluation and optimization of the electrode microstructure parameters, the activation overpotential was decreased by 29% and the overall ITSOFC maximum power density was increased by almost 400% from the benchmark PNNL case. The effects and importance of electrode microstructure parameters on ITSOFC performance were defined. Optimization of such parameters will be the key in creating viable ITSOFC systems. Although this was deemed successful for this project, future research should be focused on numerically quantifying and modeling the electrode microstructure in two- and three-dimensions for more accurate results, as the electrode microstructure may be highly multidimensional in nature.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEffects of Electrode Microstructure on Intermediate Temperature Solid Oxide Fuel Cell Performance
    typeJournal Paper
    journal volume7
    journal issue5
    journal titleJournal of Fuel Cell Science and Technology
    identifier doi10.1115/1.4000683
    journal fristpage51015
    identifier eissn2381-6910
    treeJournal of Fuel Cell Science and Technology:;2010:;volume( 007 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian