YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Vorticity Dynamics in Axial Compressor Flow Diagnosis and Design—Part II: Methodology and Application of Boundary Vorticity Flux

    Source: Journal of Fluids Engineering:;2010:;volume( 132 ):;issue: 001::page 11102
    Author:
    Qiushi Li
    ,
    Jie-Zhi Wu
    ,
    Hong Wu
    ,
    Ming Guo
    DOI: 10.1115/1.4000650
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In a companion paper (2008, “Vorticity Dynamics in Axial Compressor Flow Diagnosis and Design,” ASME J. Fluids Eng., 130, p. 041102), a study has been made on the critical role of circumferential vorticity (CV) in the performance of axial compressor in through-flow design (TFD). It has been shown there that to enhance the pressure ratio, the positive and negative CV peaks should be pushed to the casing and hub, respectively. This criterion has led to an optimal TFD that indeed improves the pressure ratio and efficiency. The CV also has great impact on the stall margin as it reflects the end wall blockage, especially at the tip region of the compressor. While that work was based on inviscid and axisymmetric theory, in this paper, we move on to the diagnosis and optimal design of fully three-dimensional (3D) viscous flow in axial compressors, focusing on the boundary vorticity flux (BVF), which captures the highly localized peaks of pressure gradient on the surface of the compressor blade, and thereby signifies the boundary layer separation and dominates the work rate done to the fluid by the compressor. For the 2D cascade flow we show that the BVF is directly related to the blade geometry. BVF-based 2D and 3D optimal blade design methodologies are developed to control the velocity diffusion, of which the results are confirmed by Reynolds-averaged Navier–Stokes simulations to more significantly improve the compressor performance than that of CV-based TFD. The methodology enriches the current aerodynamic design system of compressors.
    • Download: (2.017Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Vorticity Dynamics in Axial Compressor Flow Diagnosis and Design—Part II: Methodology and Application of Boundary Vorticity Flux

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/143546
    Collections
    • Journal of Fluids Engineering

    Show full item record

    contributor authorQiushi Li
    contributor authorJie-Zhi Wu
    contributor authorHong Wu
    contributor authorMing Guo
    date accessioned2017-05-09T00:38:21Z
    date available2017-05-09T00:38:21Z
    date copyrightJanuary, 2010
    date issued2010
    identifier issn0098-2202
    identifier otherJFEGA4-27406#011102_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/143546
    description abstractIn a companion paper (2008, “Vorticity Dynamics in Axial Compressor Flow Diagnosis and Design,” ASME J. Fluids Eng., 130, p. 041102), a study has been made on the critical role of circumferential vorticity (CV) in the performance of axial compressor in through-flow design (TFD). It has been shown there that to enhance the pressure ratio, the positive and negative CV peaks should be pushed to the casing and hub, respectively. This criterion has led to an optimal TFD that indeed improves the pressure ratio and efficiency. The CV also has great impact on the stall margin as it reflects the end wall blockage, especially at the tip region of the compressor. While that work was based on inviscid and axisymmetric theory, in this paper, we move on to the diagnosis and optimal design of fully three-dimensional (3D) viscous flow in axial compressors, focusing on the boundary vorticity flux (BVF), which captures the highly localized peaks of pressure gradient on the surface of the compressor blade, and thereby signifies the boundary layer separation and dominates the work rate done to the fluid by the compressor. For the 2D cascade flow we show that the BVF is directly related to the blade geometry. BVF-based 2D and 3D optimal blade design methodologies are developed to control the velocity diffusion, of which the results are confirmed by Reynolds-averaged Navier–Stokes simulations to more significantly improve the compressor performance than that of CV-based TFD. The methodology enriches the current aerodynamic design system of compressors.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleVorticity Dynamics in Axial Compressor Flow Diagnosis and Design—Part II: Methodology and Application of Boundary Vorticity Flux
    typeJournal Paper
    journal volume132
    journal issue1
    journal titleJournal of Fluids Engineering
    identifier doi10.1115/1.4000650
    journal fristpage11102
    identifier eissn1528-901X
    treeJournal of Fluids Engineering:;2010:;volume( 132 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian