YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Maximum Spread of Droplet on Solid Surface: Low Reynolds and Weber Numbers

    Source: Journal of Fluids Engineering:;2010:;volume( 132 ):;issue: 006::page 61302
    Author:
    Ri Li
    ,
    Nasser Ashgriz
    ,
    Sanjeev Chandra
    DOI: 10.1115/1.4001695
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This theoretical study proposes an analytical model to predict the maximum spread of single droplets on solid surfaces with zero or low Weber and Reynolds numbers. The spreading droplet is assumed as a spherical cap considering low impact velocities. Three spreading states are considered, which include equilibrium spread, maximum spontaneous spread, and maximum spread. Energy conservation is applied to the droplet as a control volume. The model equation contains two viscous dissipation terms, each of which has a defined coefficient. One term is for viscous dissipation in spontaneous spreading and the other one is for viscous dissipation of the initial kinetic energy of the droplet. The new model satisfies the fundamental physics of drop-surface interaction and can be used for droplets impacting on solid surfaces with or without initial kinetic energy.
    keyword(s): Kinetic energy , Potential energy , Reynolds number , Drops , Energy dissipation , Equilibrium (Physics) , Energy conservation , Equations , Surface tension , Shapes AND Physics ,
    • Download: (446.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Maximum Spread of Droplet on Solid Surface: Low Reynolds and Weber Numbers

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/143472
    Collections
    • Journal of Fluids Engineering

    Show full item record

    contributor authorRi Li
    contributor authorNasser Ashgriz
    contributor authorSanjeev Chandra
    date accessioned2017-05-09T00:38:14Z
    date available2017-05-09T00:38:14Z
    date copyrightJune, 2010
    date issued2010
    identifier issn0098-2202
    identifier otherJFEGA4-27421#061302_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/143472
    description abstractThis theoretical study proposes an analytical model to predict the maximum spread of single droplets on solid surfaces with zero or low Weber and Reynolds numbers. The spreading droplet is assumed as a spherical cap considering low impact velocities. Three spreading states are considered, which include equilibrium spread, maximum spontaneous spread, and maximum spread. Energy conservation is applied to the droplet as a control volume. The model equation contains two viscous dissipation terms, each of which has a defined coefficient. One term is for viscous dissipation in spontaneous spreading and the other one is for viscous dissipation of the initial kinetic energy of the droplet. The new model satisfies the fundamental physics of drop-surface interaction and can be used for droplets impacting on solid surfaces with or without initial kinetic energy.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMaximum Spread of Droplet on Solid Surface: Low Reynolds and Weber Numbers
    typeJournal Paper
    journal volume132
    journal issue6
    journal titleJournal of Fluids Engineering
    identifier doi10.1115/1.4001695
    journal fristpage61302
    identifier eissn1528-901X
    keywordsKinetic energy
    keywordsPotential energy
    keywordsReynolds number
    keywordsDrops
    keywordsEnergy dissipation
    keywordsEquilibrium (Physics)
    keywordsEnergy conservation
    keywordsEquations
    keywordsSurface tension
    keywordsShapes AND Physics
    treeJournal of Fluids Engineering:;2010:;volume( 132 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian