Show simple item record

contributor authorWesly S. Anderson
contributor authorDave S. Evans
contributor authorScott D. Stouffer
contributor authorGarth R. Justinger
contributor authorMarc D. Polanka
contributor authorJoseph Zelina
date accessioned2017-05-09T00:37:43Z
date available2017-05-09T00:37:43Z
date copyrightMay, 2010
date issued2010
identifier issn1528-8919
identifier otherJETPEZ-27112#051501_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/143196
description abstractFilm cooling plays a critical role in providing effective thermal protection to components in modern gas turbine engines. A significant effort has been undertaken over the last 40 years to improve the distribution of coolant and to ensure that the airfoil is protected by this coolant from the hot gases in the freestream. This film, under conditions with high fuel-air ratios, may actually be detrimental to the underlying metal. The presence of unburned fuel from an upstream combustor may interact with this oxygen rich film coolant jet resulting in secondary combustion. The completion of the reactions can increase the gas temperature locally resulting in higher heat transfer to the airfoil directly along the path line of the film coolant jet. This secondary combustion could damage the turbine blade, resulting in costly repair, reduction in turbine life, or even engine failure. However, knowledge of film cooling in a reactive flow is very limited. The current study explores the interaction of cooling flow from typical cooling holes with the exhaust of a fuel-rich well-stirred reactor operating at high temperatures over a flat plate. Surface temperatures, heat flux, and heat transfer coefficients are calculated for a variety of reactor fuel-to-air ratios, cooling hole geometries, and blowing ratios. Emphasis is placed on the difference between a normal cylindrical hole, an inclined cylindrical hole, and a fan-shaped cooling hole. When both air and nitrogen are injected through the cooling holes, the changes in surface temperature can be directly correlated with the presence of the reaction. Photographs of the localized burning are presented to verify the extent and locations of the reaction.
publisherThe American Society of Mechanical Engineers (ASME)
titleEffects of a Reacting Cross-Stream on Turbine Film Cooling
typeJournal Paper
journal volume132
journal issue5
journal titleJournal of Engineering for Gas Turbines and Power
identifier doi10.1115/1.3204616
journal fristpage51501
identifier eissn0742-4795
keywordsFlow (Dynamics)
keywordsTemperature
keywordsCooling
keywordsCoolants
keywordsTurbines
keywordsHeat flux
keywordsNitrogen AND Fuels
treeJournal of Engineering for Gas Turbines and Power:;2010:;volume( 132 ):;issue: 005
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record