YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Turning CO2 Capture On and Off in Response to Electric Grid Demand: A Baseline Analysis of Emissions and Economics

    Source: Journal of Energy Resources Technology:;2010:;volume( 132 ):;issue: 002::page 21003
    Author:
    Stuart M. Cohen
    ,
    Gary T. Rochelle
    ,
    Michael E. Webber
    DOI: 10.1115/1.4001573
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Coal consumption accounted for 36% of America’s CO2 emissions in 2005, yet because coal is a relatively inexpensive, widely available, and politically secure fuel, its use is projected to grow in the coming decades (USEIA, 2007, “World Carbon Dioxide Emissions From the Use of Fossil Fuels,” International Energy Annual 2005, http://www.eia.doe.gov/emeu/iea/carbon.html). In order for coal to contribute to the U.S. energy mix without detriment to an environmentally acceptable future, implementation of carbon capture and sequestration (CCS) technology is critical. Techno-economic studies establish the large expense of CCS due to substantial energy requirements and capital costs. However, such analyses typically ignore operating dynamics in response to diurnal and seasonal variations in electricity demand and pricing, and they assume that CO2 capture systems operate continuously at high CO2 removal and permanently consume a large portion of gross plant generation capacity. In contrast, this study uses an electric grid-level dynamic framework to consider the possibility of turning CO2 capture systems off during peak electricity demands to regain generation capacity lost to CO2 capture energy requirements. This practice eliminates the need to build additional generation capacity to make up for CO2 capture energy requirements, and it might allow plant operators to benefit from selling more electricity during high price time periods. Post-combustion CO2 absorption and stripping is a leading capture technology that, unlike many other capture methods, is particularly suited for flexible or on/off operation. This study presents a case study on the Electric Reliability Council of Texas (ERCOT) electric grid that estimates CO2 capture utilization, system-level costs, and CO2 emissions associated with different strategies of using on/off CO2 capture on all coal-fired plants in the ERCOT grid in order to satisfy peak electricity demand. It compares base cases of no CO2 capture and “always on” capture with scenarios where capture is turned off during: (1) peak demand hours every day of the year, (2) the entire season of peak system demand, and (3) system peak demand hours only on seasonal peak demand days. By eliminating the need for new capacity to replace output lost to CO2 capture energy requirements, flexible CO2 capture could save billions of dollars in capital costs. Since capture systems remain on for most of the year, flexible capture still achieves substantial CO2 emissions reductions.
    keyword(s): Stress , Coal , Industrial plants , Carbon capture and storage , Emissions , Fuels , Economics AND Turning ,
    • Download: (329.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Turning CO2 Capture On and Off in Response to Electric Grid Demand: A Baseline Analysis of Emissions and Economics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/143003
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorStuart M. Cohen
    contributor authorGary T. Rochelle
    contributor authorMichael E. Webber
    date accessioned2017-05-09T00:37:19Z
    date available2017-05-09T00:37:19Z
    date copyrightJune, 2010
    date issued2010
    identifier issn0195-0738
    identifier otherJERTD2-26569#021003_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/143003
    description abstractCoal consumption accounted for 36% of America’s CO2 emissions in 2005, yet because coal is a relatively inexpensive, widely available, and politically secure fuel, its use is projected to grow in the coming decades (USEIA, 2007, “World Carbon Dioxide Emissions From the Use of Fossil Fuels,” International Energy Annual 2005, http://www.eia.doe.gov/emeu/iea/carbon.html). In order for coal to contribute to the U.S. energy mix without detriment to an environmentally acceptable future, implementation of carbon capture and sequestration (CCS) technology is critical. Techno-economic studies establish the large expense of CCS due to substantial energy requirements and capital costs. However, such analyses typically ignore operating dynamics in response to diurnal and seasonal variations in electricity demand and pricing, and they assume that CO2 capture systems operate continuously at high CO2 removal and permanently consume a large portion of gross plant generation capacity. In contrast, this study uses an electric grid-level dynamic framework to consider the possibility of turning CO2 capture systems off during peak electricity demands to regain generation capacity lost to CO2 capture energy requirements. This practice eliminates the need to build additional generation capacity to make up for CO2 capture energy requirements, and it might allow plant operators to benefit from selling more electricity during high price time periods. Post-combustion CO2 absorption and stripping is a leading capture technology that, unlike many other capture methods, is particularly suited for flexible or on/off operation. This study presents a case study on the Electric Reliability Council of Texas (ERCOT) electric grid that estimates CO2 capture utilization, system-level costs, and CO2 emissions associated with different strategies of using on/off CO2 capture on all coal-fired plants in the ERCOT grid in order to satisfy peak electricity demand. It compares base cases of no CO2 capture and “always on” capture with scenarios where capture is turned off during: (1) peak demand hours every day of the year, (2) the entire season of peak system demand, and (3) system peak demand hours only on seasonal peak demand days. By eliminating the need for new capacity to replace output lost to CO2 capture energy requirements, flexible CO2 capture could save billions of dollars in capital costs. Since capture systems remain on for most of the year, flexible capture still achieves substantial CO2 emissions reductions.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleTurning CO2 Capture On and Off in Response to Electric Grid Demand: A Baseline Analysis of Emissions and Economics
    typeJournal Paper
    journal volume132
    journal issue2
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4001573
    journal fristpage21003
    identifier eissn1528-8994
    keywordsStress
    keywordsCoal
    keywordsIndustrial plants
    keywordsCarbon capture and storage
    keywordsEmissions
    keywordsFuels
    keywordsEconomics AND Turning
    treeJournal of Energy Resources Technology:;2010:;volume( 132 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian