YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Computing and Information Science in Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Computing and Information Science in Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Case-Based Reasoning for Evolutionary MEMS Design

    Source: Journal of Computing and Information Science in Engineering:;2010:;volume( 010 ):;issue: 003::page 31005
    Author:
    Corie L. Cobb
    ,
    Alice M. Agogino
    DOI: 10.1115/1.3462920
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A knowledge-based computer-aided design tool for microelectromechanical systems (MEMS) design synthesis called case-based synthesis of MEMS (CaSyn-MEMS) has been developed. MEMS-based technologies have the potential to revolutionize many consumer products and to create new market opportunities in areas such as biotechnology, aerospace, and data communications. However, the commercialization of MEMS still faces many challenges due to a lack of efficient computer-aided design tools that can assist designers during the early conceptual phases of the design process. CaSyn-MEMS combines a case-based reasoning (CBR) algorithm and a MEMS case library with parametric optimization and a multi-objective genetic algorithm (MOGA) to synthesize new MEMS design topologies that meet or improve upon a designer’s specifications. CBR is an artificial intelligence methodology that uses past design solutions and adapts them to solve current problems. Having the ability to draw upon past design knowledge is advantageous to MEMS designers, allowing reuse and modification of previously successful designs to accelerate the design process. To enable knowledge reuse, a hierarchical MEMS case library has been created. A reasoning algorithm retrieves cases with solved problems similar to the current design problem. Focusing on resonators as a case study, case retrieval demonstrated an 82% success rate. Using the retrieved cases, approximate design solutions were proposed by first adapting cases with parametric optimization, resulting in a 25% reduction in design area on average while bringing designs within 2% of the frequency goal. In situations where parametric optimization was not sufficient, a more radical design adaptation was performed through the use of MOGA. CBR provided MOGA with good starting points for optimization, allowing efficient convergence to higher quantities of Pareto optimal design concepts while reducing design area by up to 43% and meeting frequency goals within 5%.
    keyword(s): Microelectromechanical systems , Design , Optimization AND Information retrieval ,
    • Download: (815.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Case-Based Reasoning for Evolutionary MEMS Design

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/142773
    Collections
    • Journal of Computing and Information Science in Engineering

    Show full item record

    contributor authorCorie L. Cobb
    contributor authorAlice M. Agogino
    date accessioned2017-05-09T00:36:55Z
    date available2017-05-09T00:36:55Z
    date copyrightSeptember, 2010
    date issued2010
    identifier issn1530-9827
    identifier otherJCISB6-26022#031005_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/142773
    description abstractA knowledge-based computer-aided design tool for microelectromechanical systems (MEMS) design synthesis called case-based synthesis of MEMS (CaSyn-MEMS) has been developed. MEMS-based technologies have the potential to revolutionize many consumer products and to create new market opportunities in areas such as biotechnology, aerospace, and data communications. However, the commercialization of MEMS still faces many challenges due to a lack of efficient computer-aided design tools that can assist designers during the early conceptual phases of the design process. CaSyn-MEMS combines a case-based reasoning (CBR) algorithm and a MEMS case library with parametric optimization and a multi-objective genetic algorithm (MOGA) to synthesize new MEMS design topologies that meet or improve upon a designer’s specifications. CBR is an artificial intelligence methodology that uses past design solutions and adapts them to solve current problems. Having the ability to draw upon past design knowledge is advantageous to MEMS designers, allowing reuse and modification of previously successful designs to accelerate the design process. To enable knowledge reuse, a hierarchical MEMS case library has been created. A reasoning algorithm retrieves cases with solved problems similar to the current design problem. Focusing on resonators as a case study, case retrieval demonstrated an 82% success rate. Using the retrieved cases, approximate design solutions were proposed by first adapting cases with parametric optimization, resulting in a 25% reduction in design area on average while bringing designs within 2% of the frequency goal. In situations where parametric optimization was not sufficient, a more radical design adaptation was performed through the use of MOGA. CBR provided MOGA with good starting points for optimization, allowing efficient convergence to higher quantities of Pareto optimal design concepts while reducing design area by up to 43% and meeting frequency goals within 5%.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleCase-Based Reasoning for Evolutionary MEMS Design
    typeJournal Paper
    journal volume10
    journal issue3
    journal titleJournal of Computing and Information Science in Engineering
    identifier doi10.1115/1.3462920
    journal fristpage31005
    identifier eissn1530-9827
    keywordsMicroelectromechanical systems
    keywordsDesign
    keywordsOptimization AND Information retrieval
    treeJournal of Computing and Information Science in Engineering:;2010:;volume( 010 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian