YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Nonlinear Dynamics of Electrically Actuated Carbon Nanotube Resonators

    Source: Journal of Computational and Nonlinear Dynamics:;2010:;volume( 005 ):;issue: 001::page 11009
    Author:
    Hassen M. Ouakad
    ,
    Mohammad I. Younis
    DOI: 10.1115/1.4000319
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This work presents an investigation of the nonlinear dynamics of carbon nanotubes (CNTs) when actuated by a dc load superimposed to an ac harmonic load. Cantilevered and clamped-clamped CNTs are studied. The carbon nanotube is described by an Euler–Bernoulli beam model that accounts for the geometric nonlinearity and the nonlinear electrostatic force. A reduced-order model based on the Galerkin method is developed and utilized to simulate the static and dynamic responses of the carbon nanotube. The free-vibration problem is solved using both the reduced-order model and by solving directly the coupled in-plane and out-of-plane boundary-value problems governing the motion of the nanotube. Comparison of the results generated by these two methods to published data of a more complicated molecular dynamics model shows good agreement. Dynamic analysis is conducted to explore the nonlinear oscillation of the carbon nanotube near its fundamental natural frequency (primary-resonance) and near one-half, twice, and three times its natural frequency (secondary-resonances). The nonlinear analysis is carried out using a shooting technique to capture periodic orbits combined with the Floquet theory to analyze their stability. The nonlinear resonance frequency of the CNTs is calculated as a function of the ac load. Subharmonic-resonances are found to be activated over a wide range of frequencies, which is a unique property of CNTs. The results show that these resonances can lead to complex nonlinear dynamics phenomena, such as hysteresis, dynamic pull-in, hardening and softening behaviors, and frequency bands with an inevitable escape from a potential well.
    keyword(s): Resonance , Carbon nanotubes , Stress AND Electric potential ,
    • Download: (1.968Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Nonlinear Dynamics of Electrically Actuated Carbon Nanotube Resonators

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/142753
    Collections
    • Journal of Computational and Nonlinear Dynamics

    Show full item record

    contributor authorHassen M. Ouakad
    contributor authorMohammad I. Younis
    date accessioned2017-05-09T00:36:52Z
    date available2017-05-09T00:36:52Z
    date copyrightJanuary, 2010
    date issued2010
    identifier issn1555-1415
    identifier otherJCNDDM-25702#011009_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/142753
    description abstractThis work presents an investigation of the nonlinear dynamics of carbon nanotubes (CNTs) when actuated by a dc load superimposed to an ac harmonic load. Cantilevered and clamped-clamped CNTs are studied. The carbon nanotube is described by an Euler–Bernoulli beam model that accounts for the geometric nonlinearity and the nonlinear electrostatic force. A reduced-order model based on the Galerkin method is developed and utilized to simulate the static and dynamic responses of the carbon nanotube. The free-vibration problem is solved using both the reduced-order model and by solving directly the coupled in-plane and out-of-plane boundary-value problems governing the motion of the nanotube. Comparison of the results generated by these two methods to published data of a more complicated molecular dynamics model shows good agreement. Dynamic analysis is conducted to explore the nonlinear oscillation of the carbon nanotube near its fundamental natural frequency (primary-resonance) and near one-half, twice, and three times its natural frequency (secondary-resonances). The nonlinear analysis is carried out using a shooting technique to capture periodic orbits combined with the Floquet theory to analyze their stability. The nonlinear resonance frequency of the CNTs is calculated as a function of the ac load. Subharmonic-resonances are found to be activated over a wide range of frequencies, which is a unique property of CNTs. The results show that these resonances can lead to complex nonlinear dynamics phenomena, such as hysteresis, dynamic pull-in, hardening and softening behaviors, and frequency bands with an inevitable escape from a potential well.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNonlinear Dynamics of Electrically Actuated Carbon Nanotube Resonators
    typeJournal Paper
    journal volume5
    journal issue1
    journal titleJournal of Computational and Nonlinear Dynamics
    identifier doi10.1115/1.4000319
    journal fristpage11009
    identifier eissn1555-1423
    keywordsResonance
    keywordsCarbon nanotubes
    keywordsStress AND Electric potential
    treeJournal of Computational and Nonlinear Dynamics:;2010:;volume( 005 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian