YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Modified Path Integral Solution of Fokker–Planck Equation: Response and Bifurcation of Nonlinear Systems

    Source: Journal of Computational and Nonlinear Dynamics:;2010:;volume( 005 ):;issue: 001::page 11004
    Author:
    Pankaj Kumar
    ,
    S. Narayanan
    DOI: 10.1115/1.4000312
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Response of nonlinear systems subjected to harmonic, parametric, and random excitations is of importance in the field of structural dynamics. The transitional probability density function (PDF) of the random response of nonlinear systems under white or colored noise excitation (delta correlated) is governed by both the forward Fokker–Planck (FP) and the backward Kolmogorov equations. This paper presents a new approach for efficient numerical implementation of the path integral (PI) method in the solution of the FP equation for some nonlinear systems subjected to white noise, parametric, and combined harmonic and white noise excitations. The modified PI method is based on a non-Gaussian transition PDF and the Gauss–Legendre integration scheme. The effects of white noise intensity, amplitude, and frequency of harmonic excitation and the level of nonlinearity on stochastic jump and bifurcation behaviors of a hardening Duffing oscillator are also investigated.
    keyword(s): Density , Path integrals , Nonlinear systems , Bifurcation , Equations , Fokker-Planck equation , Probability , Random excitation , White noise , Displacement , Errors , Polynomials , Numerical analysis AND Hardening ,
    • Download: (1.218Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Modified Path Integral Solution of Fokker–Planck Equation: Response and Bifurcation of Nonlinear Systems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/142748
    Collections
    • Journal of Computational and Nonlinear Dynamics

    Show full item record

    contributor authorPankaj Kumar
    contributor authorS. Narayanan
    date accessioned2017-05-09T00:36:52Z
    date available2017-05-09T00:36:52Z
    date copyrightJanuary, 2010
    date issued2010
    identifier issn1555-1415
    identifier otherJCNDDM-25702#011004_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/142748
    description abstractResponse of nonlinear systems subjected to harmonic, parametric, and random excitations is of importance in the field of structural dynamics. The transitional probability density function (PDF) of the random response of nonlinear systems under white or colored noise excitation (delta correlated) is governed by both the forward Fokker–Planck (FP) and the backward Kolmogorov equations. This paper presents a new approach for efficient numerical implementation of the path integral (PI) method in the solution of the FP equation for some nonlinear systems subjected to white noise, parametric, and combined harmonic and white noise excitations. The modified PI method is based on a non-Gaussian transition PDF and the Gauss–Legendre integration scheme. The effects of white noise intensity, amplitude, and frequency of harmonic excitation and the level of nonlinearity on stochastic jump and bifurcation behaviors of a hardening Duffing oscillator are also investigated.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleModified Path Integral Solution of Fokker–Planck Equation: Response and Bifurcation of Nonlinear Systems
    typeJournal Paper
    journal volume5
    journal issue1
    journal titleJournal of Computational and Nonlinear Dynamics
    identifier doi10.1115/1.4000312
    journal fristpage11004
    identifier eissn1555-1423
    keywordsDensity
    keywordsPath integrals
    keywordsNonlinear systems
    keywordsBifurcation
    keywordsEquations
    keywordsFokker-Planck equation
    keywordsProbability
    keywordsRandom excitation
    keywordsWhite noise
    keywordsDisplacement
    keywordsErrors
    keywordsPolynomials
    keywordsNumerical analysis AND Hardening
    treeJournal of Computational and Nonlinear Dynamics:;2010:;volume( 005 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian