YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Directions of the Tangential Creep Forces in Railroad Vehicle Dynamics

    Source: Journal of Computational and Nonlinear Dynamics:;2010:;volume( 005 ):;issue: 002::page 21006
    Author:
    Ali Afshari
    ,
    Ahmed A. Shabana
    DOI: 10.1115/1.4000796
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In some of the wheel/rail creep theories used in railroad vehicle simulations, the direction of the tangential creep forces is assumed to be the wheel rolling direction (RD). When the Hertz theory is used, an assumption is made that the rolling direction is the direction of one of the axes of the contact ellipse. In principle, the rolling direction depends on the wheel motion while the direction of the axes of the contact ellipse (CE) are determined using the principal directions, which depend only on the geometry of the wheel and rail surfaces and do not depend on the motion of the wheel. The RD and CE directions can also be different from the direction of the rail longitudinal tangent (LT) at the contact point. In this investigation, the differences between the contact frames that are based on the RD, LT, and CE directions that enter into the calculation of the wheel/rail creep forces and moments are discussed. The choice of the frame in which the contact forces are defined can be determined using one longitudinal vector and the normal to the rail at the contact point. While the normal vector is uniquely defined, different choices can be made for the longitudinal vector including the RD, LT, and CE directions. In the case of pure rolling or when the slipping is small, the RD direction can be defined using the cross product of the angular velocity vector and the vector that defines the location of the contact point. Therefore, this direction does not depend explicitly on the geometry of the wheel and rail surfaces at the contact point. The LT direction is defined as the direction of the longitudinal tangent obtained by differentiation of the rail surface equation with respect to the rail longitudinal parameter (arc length). Such a tangent does not depend explicitly on the direction of the wheel angular velocity nor does it depend on the wheel geometry. The CE direction is defined using the direction of the axes of the contact ellipse used in Hertz theory. In the Hertzian contact theory, the contact ellipse axes are determined using the principal directions associated with the principal curvatures. Therefore, the CE direction differs from the RD and LT directions in the sense that it is function of the geometry of the wheel and rail surfaces. In order to better understand the role of geometry in the formulation of the creep forces, the relationship between the principal curvatures of the rail surface and the curvatures of the rail profile and the rail space curve is discussed in this investigation. Numerical examples are presented in order to examine the differences in the results obtained using the RD, LT and CE contact frames.
    keyword(s): Force , Creep , Structural frames , Geometry , Rails , Wheels , Railroads AND Motion ,
    • Download: (815.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Directions of the Tangential Creep Forces in Railroad Vehicle Dynamics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/142734
    Collections
    • Journal of Computational and Nonlinear Dynamics

    Show full item record

    contributor authorAli Afshari
    contributor authorAhmed A. Shabana
    date accessioned2017-05-09T00:36:50Z
    date available2017-05-09T00:36:50Z
    date copyrightApril, 2010
    date issued2010
    identifier issn1555-1415
    identifier otherJCNDDM-25712#021006_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/142734
    description abstractIn some of the wheel/rail creep theories used in railroad vehicle simulations, the direction of the tangential creep forces is assumed to be the wheel rolling direction (RD). When the Hertz theory is used, an assumption is made that the rolling direction is the direction of one of the axes of the contact ellipse. In principle, the rolling direction depends on the wheel motion while the direction of the axes of the contact ellipse (CE) are determined using the principal directions, which depend only on the geometry of the wheel and rail surfaces and do not depend on the motion of the wheel. The RD and CE directions can also be different from the direction of the rail longitudinal tangent (LT) at the contact point. In this investigation, the differences between the contact frames that are based on the RD, LT, and CE directions that enter into the calculation of the wheel/rail creep forces and moments are discussed. The choice of the frame in which the contact forces are defined can be determined using one longitudinal vector and the normal to the rail at the contact point. While the normal vector is uniquely defined, different choices can be made for the longitudinal vector including the RD, LT, and CE directions. In the case of pure rolling or when the slipping is small, the RD direction can be defined using the cross product of the angular velocity vector and the vector that defines the location of the contact point. Therefore, this direction does not depend explicitly on the geometry of the wheel and rail surfaces at the contact point. The LT direction is defined as the direction of the longitudinal tangent obtained by differentiation of the rail surface equation with respect to the rail longitudinal parameter (arc length). Such a tangent does not depend explicitly on the direction of the wheel angular velocity nor does it depend on the wheel geometry. The CE direction is defined using the direction of the axes of the contact ellipse used in Hertz theory. In the Hertzian contact theory, the contact ellipse axes are determined using the principal directions associated with the principal curvatures. Therefore, the CE direction differs from the RD and LT directions in the sense that it is function of the geometry of the wheel and rail surfaces. In order to better understand the role of geometry in the formulation of the creep forces, the relationship between the principal curvatures of the rail surface and the curvatures of the rail profile and the rail space curve is discussed in this investigation. Numerical examples are presented in order to examine the differences in the results obtained using the RD, LT and CE contact frames.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDirections of the Tangential Creep Forces in Railroad Vehicle Dynamics
    typeJournal Paper
    journal volume5
    journal issue2
    journal titleJournal of Computational and Nonlinear Dynamics
    identifier doi10.1115/1.4000796
    journal fristpage21006
    identifier eissn1555-1423
    keywordsForce
    keywordsCreep
    keywordsStructural frames
    keywordsGeometry
    keywordsRails
    keywordsWheels
    keywordsRailroads AND Motion
    treeJournal of Computational and Nonlinear Dynamics:;2010:;volume( 005 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian