YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Characterization of the Fatigue Behavior of the Medial Collateral Ligament Utilizing Traditional and Novel Mechanical Variables for the Assessment of Damage Accumulation

    Source: Journal of Biomechanical Engineering:;2010:;volume( 132 ):;issue: 001::page 11001
    Author:
    Michelle L. Zec
    ,
    Paul Thistlethwaite
    ,
    Cyril B. Frank
    ,
    Nigel G. Shrive
    DOI: 10.1115/1.4000108
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Ligaments are regularly subjected to repetitive loading in vivo. Typically, mechanical studies focus on repetitive loading protocols of short duration, while those characterizing damage accumulation over a longer duration (i.e., fatigue studies) are lacking. The aims of this study were as follows: (a) to demonstrate that damage does accumulate in ligament tissue subjected to repetitive loading and (b) to evaluate existing and new methods for characterizing fatigue damage accumulation. It was hypothesized that ligaments would accumulate damage with repetitive loading as evidenced by failure at stresses well below ultimate tensile strength, creep curve discontinuities, and by reductions in stiffness during loading. Eight normal medial collateral ligaments from female New Zealand white rabbits were cycled in tension, between 0 MPa and 28 MPa, to failure or until 259,200 cycles, whichever came first. Medial collateral ligaments that did not fail were subsequently loaded to failure. Displacement rates (dlmax/dt) as well as primary, secondary, and tertiary creeps were monitored as indices of damage accumulation and impending mechanical failure. Additionally, the relative utilities of tangent, secant, and chord stiffness parameters were critically evaluated. Finally, new uses for the second derivative of force-displacement data were explored. Three out of eight ligaments failed during testing, demonstrating that ligaments can fail in fatigue under moderate tensile stress in vitro. The evaluation of displacement rates (dlmax/dt), as well as primary through tertiary creep patterns, were not well suited to predicting failure in normal ligaments until rupture was all but imminent. Tangent stiffness, which was calculated from a mathematically defined start of the “linear region,” was surprisingly constant throughout testing. Secant stiffness dropped in a predictable fashion, providing a global indicator of tissue stiffness, but did not provide any insight into fiber mechanics. Chord stiffness, on the other hand, appeared to be sensitive to fiber recruitment patterns. The second derivative of force-displacement data proved to be a useful means of (a) objectively defining the start of the linear region and (b) inferring changes in fiber recruitment patterns within ligament tissue. Tangent, secant, and chord stiffnesses highlight different attributes of ligament responses to loading; hence these parameters cannot be used interchangeably. Additionally, the second derivative of the force-displacement curve was introduced as a useful descriptive and analytical tool.
    keyword(s): Fatigue , Fibers , Stress , Biological tissues , Cycles , Displacement , Failure , Stiffness , Chords (Trusses) AND Force ,
    • Download: (402.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Characterization of the Fatigue Behavior of the Medial Collateral Ligament Utilizing Traditional and Novel Mechanical Variables for the Assessment of Damage Accumulation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/142680
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorMichelle L. Zec
    contributor authorPaul Thistlethwaite
    contributor authorCyril B. Frank
    contributor authorNigel G. Shrive
    date accessioned2017-05-09T00:36:43Z
    date available2017-05-09T00:36:43Z
    date copyrightJanuary, 2010
    date issued2010
    identifier issn0148-0731
    identifier otherJBENDY-27091#011001_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/142680
    description abstractLigaments are regularly subjected to repetitive loading in vivo. Typically, mechanical studies focus on repetitive loading protocols of short duration, while those characterizing damage accumulation over a longer duration (i.e., fatigue studies) are lacking. The aims of this study were as follows: (a) to demonstrate that damage does accumulate in ligament tissue subjected to repetitive loading and (b) to evaluate existing and new methods for characterizing fatigue damage accumulation. It was hypothesized that ligaments would accumulate damage with repetitive loading as evidenced by failure at stresses well below ultimate tensile strength, creep curve discontinuities, and by reductions in stiffness during loading. Eight normal medial collateral ligaments from female New Zealand white rabbits were cycled in tension, between 0 MPa and 28 MPa, to failure or until 259,200 cycles, whichever came first. Medial collateral ligaments that did not fail were subsequently loaded to failure. Displacement rates (dlmax/dt) as well as primary, secondary, and tertiary creeps were monitored as indices of damage accumulation and impending mechanical failure. Additionally, the relative utilities of tangent, secant, and chord stiffness parameters were critically evaluated. Finally, new uses for the second derivative of force-displacement data were explored. Three out of eight ligaments failed during testing, demonstrating that ligaments can fail in fatigue under moderate tensile stress in vitro. The evaluation of displacement rates (dlmax/dt), as well as primary through tertiary creep patterns, were not well suited to predicting failure in normal ligaments until rupture was all but imminent. Tangent stiffness, which was calculated from a mathematically defined start of the “linear region,” was surprisingly constant throughout testing. Secant stiffness dropped in a predictable fashion, providing a global indicator of tissue stiffness, but did not provide any insight into fiber mechanics. Chord stiffness, on the other hand, appeared to be sensitive to fiber recruitment patterns. The second derivative of force-displacement data proved to be a useful means of (a) objectively defining the start of the linear region and (b) inferring changes in fiber recruitment patterns within ligament tissue. Tangent, secant, and chord stiffnesses highlight different attributes of ligament responses to loading; hence these parameters cannot be used interchangeably. Additionally, the second derivative of the force-displacement curve was introduced as a useful descriptive and analytical tool.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleCharacterization of the Fatigue Behavior of the Medial Collateral Ligament Utilizing Traditional and Novel Mechanical Variables for the Assessment of Damage Accumulation
    typeJournal Paper
    journal volume132
    journal issue1
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4000108
    journal fristpage11001
    identifier eissn1528-8951
    keywordsFatigue
    keywordsFibers
    keywordsStress
    keywordsBiological tissues
    keywordsCycles
    keywordsDisplacement
    keywordsFailure
    keywordsStiffness
    keywordsChords (Trusses) AND Force
    treeJournal of Biomechanical Engineering:;2010:;volume( 132 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian