YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Role of Fabric in the Large Strain Compressive Behavior of Human Trabecular Bone

    Source: Journal of Biomechanical Engineering:;2010:;volume( 132 ):;issue: 012::page 121006
    Author:
    Mathieu Charlebois
    ,
    Michael Pretterklieber
    ,
    Philippe K. Zysset
    DOI: 10.1115/1.4001361
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Osteoporosis-related vertebral body fractures involve large compressive strains of trabecular bone. The small strain mechanical properties of the trabecular bone such as the elastic modulus or ultimate strength can be estimated using the volume fraction and a second order fabric tensor, but it remains unclear if similar estimations may be extended to large strain properties. Accordingly, the aim of this work is to identify the role of volume fraction and especially fabric in the large strain compressive behavior of human trabecular bone from various anatomical locations. Trabecular bone biopsies were extracted from human T12 vertebrae (n=31), distal radii (n=43), femoral head (n=44), and calcanei (n=30), scanned using microcomputed tomography to quantify bone volume fraction (BV/TV) and the fabric tensor (M), and tested either in unconfined or confined compression up to very large strains (∼70%). The mechanical parameters of the resulting stress-strain curves were analyzed using regression models to examine the respective influence of BV/TV and fabric eigenvalues. The compressive stress-strain curves demonstrated linear elasticity, yielding with hardening up to an ultimate stress, softening toward a minimum stress, and a steady rehardening followed by a rapid densification. For the pooled experiments, the average minimum stress was 1.89±1.77 MPa, while the corresponding mean strain was 7.15±1.84%. The minimum stress showed a weaker dependence with fabric as the elastic modulus or ultimate strength. For the confined experiments, the stress at a logarithmic strain of 1.2 was 8.08±7.91 MPa, and the dissipated energy density was 5.67±4.42 MPa. The latter variable was strongly related to the volume fraction (R2=0.83) but the correlation improved only marginally with the inclusion of fabric (R2=0.84). The influence of fabric on the mechanical properties of human trabecular bone decreases with increasing strain, while the role of volume fraction remains important. In particular, the ratio of the minimum versus the maximum stress, i.e., the relative amount of softening, decreases strongly with fabric, while the dissipated energy density is dominated by the volume fraction. The collected results will prove to be useful for modeling the softening and densification of the trabecular bone using the finite element method.
    keyword(s): Textiles , Stress , Bone , Compression AND Stress-strain curves ,
    • Download: (383.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Role of Fabric in the Large Strain Compressive Behavior of Human Trabecular Bone

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/142494
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorMathieu Charlebois
    contributor authorMichael Pretterklieber
    contributor authorPhilippe K. Zysset
    date accessioned2017-05-09T00:36:22Z
    date available2017-05-09T00:36:22Z
    date copyrightDecember, 2010
    date issued2010
    identifier issn0148-0731
    identifier otherJBENDY-27182#121006_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/142494
    description abstractOsteoporosis-related vertebral body fractures involve large compressive strains of trabecular bone. The small strain mechanical properties of the trabecular bone such as the elastic modulus or ultimate strength can be estimated using the volume fraction and a second order fabric tensor, but it remains unclear if similar estimations may be extended to large strain properties. Accordingly, the aim of this work is to identify the role of volume fraction and especially fabric in the large strain compressive behavior of human trabecular bone from various anatomical locations. Trabecular bone biopsies were extracted from human T12 vertebrae (n=31), distal radii (n=43), femoral head (n=44), and calcanei (n=30), scanned using microcomputed tomography to quantify bone volume fraction (BV/TV) and the fabric tensor (M), and tested either in unconfined or confined compression up to very large strains (∼70%). The mechanical parameters of the resulting stress-strain curves were analyzed using regression models to examine the respective influence of BV/TV and fabric eigenvalues. The compressive stress-strain curves demonstrated linear elasticity, yielding with hardening up to an ultimate stress, softening toward a minimum stress, and a steady rehardening followed by a rapid densification. For the pooled experiments, the average minimum stress was 1.89±1.77 MPa, while the corresponding mean strain was 7.15±1.84%. The minimum stress showed a weaker dependence with fabric as the elastic modulus or ultimate strength. For the confined experiments, the stress at a logarithmic strain of 1.2 was 8.08±7.91 MPa, and the dissipated energy density was 5.67±4.42 MPa. The latter variable was strongly related to the volume fraction (R2=0.83) but the correlation improved only marginally with the inclusion of fabric (R2=0.84). The influence of fabric on the mechanical properties of human trabecular bone decreases with increasing strain, while the role of volume fraction remains important. In particular, the ratio of the minimum versus the maximum stress, i.e., the relative amount of softening, decreases strongly with fabric, while the dissipated energy density is dominated by the volume fraction. The collected results will prove to be useful for modeling the softening and densification of the trabecular bone using the finite element method.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThe Role of Fabric in the Large Strain Compressive Behavior of Human Trabecular Bone
    typeJournal Paper
    journal volume132
    journal issue12
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4001361
    journal fristpage121006
    identifier eissn1528-8951
    keywordsTextiles
    keywordsStress
    keywordsBone
    keywordsCompression AND Stress-strain curves
    treeJournal of Biomechanical Engineering:;2010:;volume( 132 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian