YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Structural Health Monitoring With Autoregressive Support Vector Machines

    Source: Journal of Vibration and Acoustics:;2009:;volume( 131 ):;issue: 002::page 21004
    Author:
    Luke Bornn
    ,
    Charles R. Farrar
    ,
    Gyuhae Park
    ,
    Kevin Farinholt
    DOI: 10.1115/1.3025827
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The use of statistical methods for anomaly detection has become of interest to researchers in many subject areas. Structural health monitoring in particular has benefited from the versatility of statistical damage-detection techniques. We propose modeling structural vibration sensor output data using nonlinear time-series models. We demonstrate the improved performance of these models over currently used linear models. Whereas existing methods typically use a single sensor’s output for damage detection, we create a combined sensor analysis to maximize the efficiency of damage detection. From this combined analysis we may also identify the individual sensors that are most influenced by structural damage.
    keyword(s): Sensors , Structural health monitoring , Support vector machines , Time series AND Modeling ,
    • Download: (551.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Structural Health Monitoring With Autoregressive Support Vector Machines

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/142294
    Collections
    • Journal of Vibration and Acoustics

    Show full item record

    contributor authorLuke Bornn
    contributor authorCharles R. Farrar
    contributor authorGyuhae Park
    contributor authorKevin Farinholt
    date accessioned2017-05-09T00:36:01Z
    date available2017-05-09T00:36:01Z
    date copyrightApril, 2009
    date issued2009
    identifier issn1048-9002
    identifier otherJVACEK-28899#021004_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/142294
    description abstractThe use of statistical methods for anomaly detection has become of interest to researchers in many subject areas. Structural health monitoring in particular has benefited from the versatility of statistical damage-detection techniques. We propose modeling structural vibration sensor output data using nonlinear time-series models. We demonstrate the improved performance of these models over currently used linear models. Whereas existing methods typically use a single sensor’s output for damage detection, we create a combined sensor analysis to maximize the efficiency of damage detection. From this combined analysis we may also identify the individual sensors that are most influenced by structural damage.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleStructural Health Monitoring With Autoregressive Support Vector Machines
    typeJournal Paper
    journal volume131
    journal issue2
    journal titleJournal of Vibration and Acoustics
    identifier doi10.1115/1.3025827
    journal fristpage21004
    identifier eissn1528-8927
    keywordsSensors
    keywordsStructural health monitoring
    keywordsSupport vector machines
    keywordsTime series AND Modeling
    treeJournal of Vibration and Acoustics:;2009:;volume( 131 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian