YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Modes of Wave Propagation and Dispersion Relations in a Cylindrical Shell

    Source: Journal of Vibration and Acoustics:;2009:;volume( 131 ):;issue: 004::page 41011
    Author:
    Yu Cheng Liu
    ,
    Yun Fan Hwang
    ,
    Jin Huang Huang
    DOI: 10.1115/1.2981172
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper reinvestigates the classic problem of the dispersion relations of a cylindrical shell by obtaining a complete set of analytical solutions, based on Flügge’s theory, for all orders of circular harmonics, n=0,1,2,…,∞. The traditional numerical root search process, which requires considerable computational effort, is no longer needed. Solutions of the modal patterns (eigenvectors) for all propagating (and nonpropagating) modes are particularly emphasized, because a complete set of properly normalized eigenvectors are crucial for solving the vibration problem of a finite shell under various admissible boundary conditions. The dispersion relations and the associated eigenvectors are also the means by which to construct transfer matrices used to analyze the vibroacoustic transmission in cylindrical shell structures or pipe-hose systems. The eigenvectors obtained from the conventional method in shell analysis are not as conveniently normalized as those commonly used in mathematical physics. The present research proposes a new alternative method to find eigenvectors that are normalized such that their norms equal unity. A parallel display of the dispersion curves and the associated modal patterns has been used in the discussion and shown to provide a more insightful understanding of the wave phenomena in a cylindrical shell.
    keyword(s): Waves , Dispersion relations , Pipes , Bifurcation , Eigenvalues , Shells , Vibration , Wave propagation , Displacement AND Boundary-value problems ,
    • Download: (1.187Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Modes of Wave Propagation and Dispersion Relations in a Cylindrical Shell

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/142267
    Collections
    • Journal of Vibration and Acoustics

    Show full item record

    contributor authorYu Cheng Liu
    contributor authorYun Fan Hwang
    contributor authorJin Huang Huang
    date accessioned2017-05-09T00:35:59Z
    date available2017-05-09T00:35:59Z
    date copyrightAugust, 2009
    date issued2009
    identifier issn1048-9002
    identifier otherJVACEK-28901#041011_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/142267
    description abstractThis paper reinvestigates the classic problem of the dispersion relations of a cylindrical shell by obtaining a complete set of analytical solutions, based on Flügge’s theory, for all orders of circular harmonics, n=0,1,2,…,∞. The traditional numerical root search process, which requires considerable computational effort, is no longer needed. Solutions of the modal patterns (eigenvectors) for all propagating (and nonpropagating) modes are particularly emphasized, because a complete set of properly normalized eigenvectors are crucial for solving the vibration problem of a finite shell under various admissible boundary conditions. The dispersion relations and the associated eigenvectors are also the means by which to construct transfer matrices used to analyze the vibroacoustic transmission in cylindrical shell structures or pipe-hose systems. The eigenvectors obtained from the conventional method in shell analysis are not as conveniently normalized as those commonly used in mathematical physics. The present research proposes a new alternative method to find eigenvectors that are normalized such that their norms equal unity. A parallel display of the dispersion curves and the associated modal patterns has been used in the discussion and shown to provide a more insightful understanding of the wave phenomena in a cylindrical shell.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleModes of Wave Propagation and Dispersion Relations in a Cylindrical Shell
    typeJournal Paper
    journal volume131
    journal issue4
    journal titleJournal of Vibration and Acoustics
    identifier doi10.1115/1.2981172
    journal fristpage41011
    identifier eissn1528-8927
    keywordsWaves
    keywordsDispersion relations
    keywordsPipes
    keywordsBifurcation
    keywordsEigenvalues
    keywordsShells
    keywordsVibration
    keywordsWave propagation
    keywordsDisplacement AND Boundary-value problems
    treeJournal of Vibration and Acoustics:;2009:;volume( 131 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian