YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Characterization of a Foil Bearing Structure at Increasing Temperatures: Static Load and Dynamic Force Performance

    Source: Journal of Tribology:;2009:;volume( 131 ):;issue: 004::page 41703
    Author:
    Tae Ho Kim
    ,
    Anthony W. Breedlove
    ,
    Luis San Andrés
    DOI: 10.1115/1.3195042
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Oil-free turbomachinery relies on gas bearing supports for reduced power losses and enhanced rotordynamic stability. Gas foil bearings (GFBs) with bump-strip compliant layers can sustain large loads, both static and dynamic, and provide damping to reduce shaft vibrations. The ultimate load capacity of GFBs depends on the material properties and configuration of the underlying bump-strip structures. In high temperature applications, thermal effects, which change the operating clearances and material properties, can considerably affect the performance of the GFB structure. This paper presents experiments conducted to estimate the structural stiffness of a test GFB for increasing shaft temperatures. A 38.17 mm inner diameter GFB is mounted on a nonrotating hollow shaft affixed to a rigid structure. A cartridge heater inserted into the shaft provides a controllable heat source and thermocouples record the temperatures on the shaft and GFB housing. For increasing shaft temperatures (up to 188°C), increasing static loads (0–133 N) are applied to the bearing and its deflection recorded. In the test configuration, thermal expansion of the GFB housing, larger than that of the shaft, nets a significant increase in radial clearance, which produces a significant reduction in the bearing’s structural stiffness. A simple physical model, which assembles the individual bump stiffnesses, predicts well the measured GFB structural stiffness. Single frequency periodic loads (40–200 Hz) are exerted on the test bearing to identify its dynamic structural stiffness and equivalent viscous damping or a dry-friction coefficient. The GFB dynamic stiffness increases by as much as 50% with dynamic load amplitudes increasing from 13 N to 31 N. The stiffness nearly doubles from low to high frequencies, and most importantly, it decreases by a third as the shaft temperature rises to 188°C. In general, the GFB dynamic stiffness is lower than its static magnitude at low excitation frequencies, while it becomes larger with increasing excitation frequency due apparently to a bump slip-stick phenomenon. The GFB viscous damping is inversely proportional to the amplitude of the dynamic load, excitation frequency, and shaft temperature. The GFB dry-friction coefficient decreases with increasing amplitude of the applied load and shaft temperature, and increases with increasing excitation frequency.
    keyword(s): Temperature , Stress , Bearings , Damping , Stiffness , Dry-friction whip and whirl , Force AND Strips ,
    • Download: (1.205Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Characterization of a Foil Bearing Structure at Increasing Temperatures: Static Load and Dynamic Force Performance

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/142024
    Collections
    • Journal of Tribology

    Show full item record

    contributor authorTae Ho Kim
    contributor authorAnthony W. Breedlove
    contributor authorLuis San Andrés
    date accessioned2017-05-09T00:35:30Z
    date available2017-05-09T00:35:30Z
    date copyrightOctober, 2009
    date issued2009
    identifier issn0742-4787
    identifier otherJOTRE9-28769#041703_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/142024
    description abstractOil-free turbomachinery relies on gas bearing supports for reduced power losses and enhanced rotordynamic stability. Gas foil bearings (GFBs) with bump-strip compliant layers can sustain large loads, both static and dynamic, and provide damping to reduce shaft vibrations. The ultimate load capacity of GFBs depends on the material properties and configuration of the underlying bump-strip structures. In high temperature applications, thermal effects, which change the operating clearances and material properties, can considerably affect the performance of the GFB structure. This paper presents experiments conducted to estimate the structural stiffness of a test GFB for increasing shaft temperatures. A 38.17 mm inner diameter GFB is mounted on a nonrotating hollow shaft affixed to a rigid structure. A cartridge heater inserted into the shaft provides a controllable heat source and thermocouples record the temperatures on the shaft and GFB housing. For increasing shaft temperatures (up to 188°C), increasing static loads (0–133 N) are applied to the bearing and its deflection recorded. In the test configuration, thermal expansion of the GFB housing, larger than that of the shaft, nets a significant increase in radial clearance, which produces a significant reduction in the bearing’s structural stiffness. A simple physical model, which assembles the individual bump stiffnesses, predicts well the measured GFB structural stiffness. Single frequency periodic loads (40–200 Hz) are exerted on the test bearing to identify its dynamic structural stiffness and equivalent viscous damping or a dry-friction coefficient. The GFB dynamic stiffness increases by as much as 50% with dynamic load amplitudes increasing from 13 N to 31 N. The stiffness nearly doubles from low to high frequencies, and most importantly, it decreases by a third as the shaft temperature rises to 188°C. In general, the GFB dynamic stiffness is lower than its static magnitude at low excitation frequencies, while it becomes larger with increasing excitation frequency due apparently to a bump slip-stick phenomenon. The GFB viscous damping is inversely proportional to the amplitude of the dynamic load, excitation frequency, and shaft temperature. The GFB dry-friction coefficient decreases with increasing amplitude of the applied load and shaft temperature, and increases with increasing excitation frequency.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleCharacterization of a Foil Bearing Structure at Increasing Temperatures: Static Load and Dynamic Force Performance
    typeJournal Paper
    journal volume131
    journal issue4
    journal titleJournal of Tribology
    identifier doi10.1115/1.3195042
    journal fristpage41703
    identifier eissn1528-8897
    keywordsTemperature
    keywordsStress
    keywordsBearings
    keywordsDamping
    keywordsStiffness
    keywordsDry-friction whip and whirl
    keywordsForce AND Strips
    treeJournal of Tribology:;2009:;volume( 131 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian