YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Applicable Contact Force Models for the Discrete Element Method: The Single Particle Perspective

    Source: Journal of Pressure Vessel Technology:;2009:;volume( 131 ):;issue: 002::page 24001
    Author:
    H. Kruggel-Emden
    ,
    S. Wirtz
    ,
    V. Scherer
    DOI: 10.1115/1.3040682
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Several processes in nature as well as many industrial applications involve static or dynamic granular materials. Granulates can adopt solid-, liquid-, or gaslike states and thereby reveal intriguing physical phenomena not observable in its versatility for any other form of matter. The frequent occurrence of phase transitions and the related characteristics thereby strongly affect their processing quality and economics. This situation demands for prediction methods for the behavior of granulates. In this context simulations provide a feasible alternative to experimental investigations. Several different simulation approaches are applicable to granular materials. The time-driven discrete element method turns out to be not only the most complex but also the most general simulation approach. Discrete element simulations have been used in a wide variety of scientific fields for more than 30 years. With the tremendous increase in available computer power, especially in the past years, the method is more and more developing to the state of the art simulation technique for granular materials not only in science but also in industrial applications. Several commercial software packages utilizing the time-driven discrete element method have emerged and are becoming more and more popular within the engineering community. Despite the long time of usage of the time-driven discrete element method, model advances derived and theoretical and experimental studies performed in the different branches of application lack harmonization. They thereby provide potential for improvements. Therefore, the scope of this paper is a review of methods and models for contact forces based on theoretical considerations and experimental data from literature. Particles considered are of spherical shape. Through model advances it is intended to contribute to a general enhancement of simulation techniques, which help improve products and the design of the related equipment.
    • Download: (561.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Applicable Contact Force Models for the Discrete Element Method: The Single Particle Perspective

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/141861
    Collections
    • Journal of Pressure Vessel Technology

    Show full item record

    contributor authorH. Kruggel-Emden
    contributor authorS. Wirtz
    contributor authorV. Scherer
    date accessioned2017-05-09T00:35:12Z
    date available2017-05-09T00:35:12Z
    date copyrightApril, 2009
    date issued2009
    identifier issn0094-9930
    identifier otherJPVTAS-28506#024001_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/141861
    description abstractSeveral processes in nature as well as many industrial applications involve static or dynamic granular materials. Granulates can adopt solid-, liquid-, or gaslike states and thereby reveal intriguing physical phenomena not observable in its versatility for any other form of matter. The frequent occurrence of phase transitions and the related characteristics thereby strongly affect their processing quality and economics. This situation demands for prediction methods for the behavior of granulates. In this context simulations provide a feasible alternative to experimental investigations. Several different simulation approaches are applicable to granular materials. The time-driven discrete element method turns out to be not only the most complex but also the most general simulation approach. Discrete element simulations have been used in a wide variety of scientific fields for more than 30 years. With the tremendous increase in available computer power, especially in the past years, the method is more and more developing to the state of the art simulation technique for granular materials not only in science but also in industrial applications. Several commercial software packages utilizing the time-driven discrete element method have emerged and are becoming more and more popular within the engineering community. Despite the long time of usage of the time-driven discrete element method, model advances derived and theoretical and experimental studies performed in the different branches of application lack harmonization. They thereby provide potential for improvements. Therefore, the scope of this paper is a review of methods and models for contact forces based on theoretical considerations and experimental data from literature. Particles considered are of spherical shape. Through model advances it is intended to contribute to a general enhancement of simulation techniques, which help improve products and the design of the related equipment.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleApplicable Contact Force Models for the Discrete Element Method: The Single Particle Perspective
    typeJournal Paper
    journal volume131
    journal issue2
    journal titleJournal of Pressure Vessel Technology
    identifier doi10.1115/1.3040682
    journal fristpage24001
    identifier eissn1528-8978
    treeJournal of Pressure Vessel Technology:;2009:;volume( 131 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian