YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Fluid-Structure Interaction Effects Modeling for the Modal Analysis of a Steam Generator Tube Bundle

    Source: Journal of Pressure Vessel Technology:;2009:;volume( 131 ):;issue: 003::page 31302
    Author:
    Jean-François Sigrist
    ,
    Daniel Broc
    DOI: 10.1115/1.3062940
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Seismic analysis of steam generator is of paramount importance in the safety assessment of nuclear installations. These analyses require, in particular, the calculation of frequency, mode shape, and effective modal mass of the system eigenmodes. As fluid-structure interaction effects can significantly affect the dynamic behavior of immersed structures, the numerical modeling of the steam generator has to take into account FSI. A complete modeling of heat exchangers (including pressure vessel, tubes, and fluid) is not accessible to the engineer for industrial design studies. In the past decades, homogenization methods have been studied and developed in order to model tubes and fluid through an equivalent continuous media, thus avoiding the tedious task to mesh all structure and fluid subdomains within the tube bundle. Few of these methods have nonetheless been implemented in industrial finite element codes. In a previous paper (, , 2007, “ Fluid-Structure Interaction Effects Modeling for the Modal Analysis of a Nuclear Pressure Vessel,” J. Pressure Vessel Technol., 123, pp. 1–6), a homogenization method has been applied to an industrial case for the modal analysis of a nuclear rector with internal structures and coupling effects modeling. The present paper aims at investigating the extension of the proposed method for the dynamic analysis of tube bundles with fluid-structure interaction modeling. The homogenization method is compared with the classical coupled method in terms of eigenfrequencies, eigenmodes, and effective modal masses.
    • Download: (1.537Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Fluid-Structure Interaction Effects Modeling for the Modal Analysis of a Steam Generator Tube Bundle

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/141801
    Collections
    • Journal of Pressure Vessel Technology

    Show full item record

    contributor authorJean-François Sigrist
    contributor authorDaniel Broc
    date accessioned2017-05-09T00:35:06Z
    date available2017-05-09T00:35:06Z
    date copyrightJune, 2009
    date issued2009
    identifier issn0094-9930
    identifier otherJPVTAS-28510#031302_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/141801
    description abstractSeismic analysis of steam generator is of paramount importance in the safety assessment of nuclear installations. These analyses require, in particular, the calculation of frequency, mode shape, and effective modal mass of the system eigenmodes. As fluid-structure interaction effects can significantly affect the dynamic behavior of immersed structures, the numerical modeling of the steam generator has to take into account FSI. A complete modeling of heat exchangers (including pressure vessel, tubes, and fluid) is not accessible to the engineer for industrial design studies. In the past decades, homogenization methods have been studied and developed in order to model tubes and fluid through an equivalent continuous media, thus avoiding the tedious task to mesh all structure and fluid subdomains within the tube bundle. Few of these methods have nonetheless been implemented in industrial finite element codes. In a previous paper (, , 2007, “ Fluid-Structure Interaction Effects Modeling for the Modal Analysis of a Nuclear Pressure Vessel,” J. Pressure Vessel Technol., 123, pp. 1–6), a homogenization method has been applied to an industrial case for the modal analysis of a nuclear rector with internal structures and coupling effects modeling. The present paper aims at investigating the extension of the proposed method for the dynamic analysis of tube bundles with fluid-structure interaction modeling. The homogenization method is compared with the classical coupled method in terms of eigenfrequencies, eigenmodes, and effective modal masses.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleFluid-Structure Interaction Effects Modeling for the Modal Analysis of a Steam Generator Tube Bundle
    typeJournal Paper
    journal volume131
    journal issue3
    journal titleJournal of Pressure Vessel Technology
    identifier doi10.1115/1.3062940
    journal fristpage31302
    identifier eissn1528-8978
    treeJournal of Pressure Vessel Technology:;2009:;volume( 131 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian