YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Combined Effects of Tube Projection, Initial Tube-Tubesheet Clearance, and Tube Material Strain Hardening on Rolled Joint Strength

    Source: Journal of Pressure Vessel Technology:;2009:;volume( 131 ):;issue: 005::page 51201
    Author:
    N. Merah
    ,
    A. Al-Aboodi
    ,
    A. N. Shuaib
    ,
    S. S. Al-Anizi
    ,
    Y. Al-Nassar
    DOI: 10.1115/1.3142387
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The tube-to-tubesheet joint strength is measured in terms of interfacial pressure between the tube’s outer surface and tubesheet bore. The strength of a rolled joint is influenced by several design parameters, including the type of tube and tubesheet materials, initial tube projection, and the initial radial clearance between the tube and tubesheet, among other factors. This paper uses finite element analysis (FEA) to evaluate the effect of several parameters on the strength of rolled joints having large overtolerances, a situation that applies to used equipment. An axisymmetric finite element model based on the sleeve diameter and rigid tube expanding roller concepts was used to analyze the effects of tube projection, initial tube-tubesheet clearance, and tube material strain-hardening property on the deformation behavior of the rolled tube and on the strength of the tube-tubesheet joint. The FEA results show that for zero tube projection (flush) the initial clearance effect is dependent on the strain-hardening capability of the tube material. For low strain-hardening tube material the interfacial pressure remains constant well above the Tubular Exchanger Manufacturer’s Association maximum overtolerance. A drastic reduction in joint strength is observed at high values of radial clearances. The cut-off clearance (clearance at which the interfacial pressure starts to drop) is found to vary linearly with the tube material hardening level, and the contact stress increases slightly for moderate strain-hardening tube materials but shows lower cut-off clearance levels. Furthermore, with flush tubes the maximum contact pressure occurs close to the secondary face (at the end of rolling) while for joints with initial tube projection the contact pressure shows two maxima occurring near the primary and the secondary faces. This is attributed to the presence of two elbows in tube deformation near the primary and secondary faces. The average interfacial pressure increased with increasing projection length for all clearances. Tube material strain hardening enhances the interfacial pressure in a similar fashion for all initial tube projection lengths considered in the analysis.
    • Download: (776.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Combined Effects of Tube Projection, Initial Tube-Tubesheet Clearance, and Tube Material Strain Hardening on Rolled Joint Strength

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/141742
    Collections
    • Journal of Pressure Vessel Technology

    Show full item record

    contributor authorN. Merah
    contributor authorA. Al-Aboodi
    contributor authorA. N. Shuaib
    contributor authorS. S. Al-Anizi
    contributor authorY. Al-Nassar
    date accessioned2017-05-09T00:35:00Z
    date available2017-05-09T00:35:00Z
    date copyrightOctober, 2009
    date issued2009
    identifier issn0094-9930
    identifier otherJPVTAS-28518#051201_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/141742
    description abstractThe tube-to-tubesheet joint strength is measured in terms of interfacial pressure between the tube’s outer surface and tubesheet bore. The strength of a rolled joint is influenced by several design parameters, including the type of tube and tubesheet materials, initial tube projection, and the initial radial clearance between the tube and tubesheet, among other factors. This paper uses finite element analysis (FEA) to evaluate the effect of several parameters on the strength of rolled joints having large overtolerances, a situation that applies to used equipment. An axisymmetric finite element model based on the sleeve diameter and rigid tube expanding roller concepts was used to analyze the effects of tube projection, initial tube-tubesheet clearance, and tube material strain-hardening property on the deformation behavior of the rolled tube and on the strength of the tube-tubesheet joint. The FEA results show that for zero tube projection (flush) the initial clearance effect is dependent on the strain-hardening capability of the tube material. For low strain-hardening tube material the interfacial pressure remains constant well above the Tubular Exchanger Manufacturer’s Association maximum overtolerance. A drastic reduction in joint strength is observed at high values of radial clearances. The cut-off clearance (clearance at which the interfacial pressure starts to drop) is found to vary linearly with the tube material hardening level, and the contact stress increases slightly for moderate strain-hardening tube materials but shows lower cut-off clearance levels. Furthermore, with flush tubes the maximum contact pressure occurs close to the secondary face (at the end of rolling) while for joints with initial tube projection the contact pressure shows two maxima occurring near the primary and the secondary faces. This is attributed to the presence of two elbows in tube deformation near the primary and secondary faces. The average interfacial pressure increased with increasing projection length for all clearances. Tube material strain hardening enhances the interfacial pressure in a similar fashion for all initial tube projection lengths considered in the analysis.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleCombined Effects of Tube Projection, Initial Tube-Tubesheet Clearance, and Tube Material Strain Hardening on Rolled Joint Strength
    typeJournal Paper
    journal volume131
    journal issue5
    journal titleJournal of Pressure Vessel Technology
    identifier doi10.1115/1.3142387
    journal fristpage51201
    identifier eissn1528-8978
    treeJournal of Pressure Vessel Technology:;2009:;volume( 131 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian