YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Medical Devices
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Medical Devices
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Arthroscopic Sheath Design and Technical Evaluation

    Source: Journal of Medical Devices:;2009:;volume( 003 ):;issue: 002::page 21003
    Author:
    Gabriëlle J. M. Tuijthof
    ,
    Leendert Blankevoort
    ,
    Just L. Herder
    ,
    C. Niek van Dijk
    DOI: 10.1115/1.3148835
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The maintenance of a clear view on the operation area is essential to perform a minimally invasive procedure. In arthroscopy, this is achieved by irrigating the joint with a saline fluid that is pumped through the joint. At present, the arthroscopic sheaths are not designed for optimal irrigation, which causes suboptimal arthroscopic view. The goal of this study is to present new design concepts and their technical evaluation to optimize irrigation. We focused on decreasing the fluid restriction and stimulating turbulent inflow streams. This is achieved by combining analysis of clinical practice, fluid mechanics theory, and experiments. A distinction is made between a three- and a two-portal technique. For a three-portal technique, the design concept consisted of a conventional sheath (∅4.5 mm) used with a smaller diameter arthroscope (∅2.7 mm). This resulted in a decreased fluid restriction. For the two-portal technique, a partition is designed, which separates the inflow and outflow streams in this sheath. Practical embodiments of the concepts are evaluated experimentally, in comparison with conventional sheaths. The setup consisted of a simulated arthroscopic operative setting of a knee joint. The main discriminating measures are the irrigation time, the fluid restriction, the flow, and the pressure in the joint. The results show that the proposed concept for the three-portal technique decreased the irrigation time significantly by 25%, and the concept with the partition for the two-portal technique decreased the irrigation time by 67% (analysis of variance, p<0.05). Different sheath tips showed no significant differences, leaving the straight shaft as the preferred embodiment. The simulation environment proved to be a suitable platform to test devices in a conditioned setting. The new sheath is expected to be a valuable improvement in achieving optimal irrigation.
    • Download: (707.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Arthroscopic Sheath Design and Technical Evaluation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/141646
    Collections
    • Journal of Medical Devices

    Show full item record

    contributor authorGabriëlle J. M. Tuijthof
    contributor authorLeendert Blankevoort
    contributor authorJust L. Herder
    contributor authorC. Niek van Dijk
    date accessioned2017-05-09T00:34:47Z
    date available2017-05-09T00:34:47Z
    date copyrightJune, 2009
    date issued2009
    identifier issn1932-6181
    identifier otherJMDOA4-28002#021003_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/141646
    description abstractThe maintenance of a clear view on the operation area is essential to perform a minimally invasive procedure. In arthroscopy, this is achieved by irrigating the joint with a saline fluid that is pumped through the joint. At present, the arthroscopic sheaths are not designed for optimal irrigation, which causes suboptimal arthroscopic view. The goal of this study is to present new design concepts and their technical evaluation to optimize irrigation. We focused on decreasing the fluid restriction and stimulating turbulent inflow streams. This is achieved by combining analysis of clinical practice, fluid mechanics theory, and experiments. A distinction is made between a three- and a two-portal technique. For a three-portal technique, the design concept consisted of a conventional sheath (∅4.5 mm) used with a smaller diameter arthroscope (∅2.7 mm). This resulted in a decreased fluid restriction. For the two-portal technique, a partition is designed, which separates the inflow and outflow streams in this sheath. Practical embodiments of the concepts are evaluated experimentally, in comparison with conventional sheaths. The setup consisted of a simulated arthroscopic operative setting of a knee joint. The main discriminating measures are the irrigation time, the fluid restriction, the flow, and the pressure in the joint. The results show that the proposed concept for the three-portal technique decreased the irrigation time significantly by 25%, and the concept with the partition for the two-portal technique decreased the irrigation time by 67% (analysis of variance, p<0.05). Different sheath tips showed no significant differences, leaving the straight shaft as the preferred embodiment. The simulation environment proved to be a suitable platform to test devices in a conditioned setting. The new sheath is expected to be a valuable improvement in achieving optimal irrigation.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleArthroscopic Sheath Design and Technical Evaluation
    typeJournal Paper
    journal volume3
    journal issue2
    journal titleJournal of Medical Devices
    identifier doi10.1115/1.3148835
    journal fristpage21003
    identifier eissn1932-619X
    treeJournal of Medical Devices:;2009:;volume( 003 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian