YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Medical Devices
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Medical Devices
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Design and Characterization of a Magnetically Driven Valveless Micropump for Drug Delivery

    Source: Journal of Medical Devices:;2009:;volume( 003 ):;issue: 002::page 27553
    Author:
    Y. Zhou
    ,
    F. Amirouche
    ,
    L. Chen
    DOI: 10.1115/1.3147558
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Micropump, an actuation source to transfer the fluid from reservoir to the target place with accuracy and reliability, plays an important role in microfluidic devices. A broad range of micropump applications in biomedical fields are found in the fluid fine regulation and precise control systems for implantable drug delivery, chemical and biological detection, as well as blood transport in cardiology system. A polydimethylsiloxane (PDMS) magnetic composite membrane based on microfabrication with dimensions of 6 mm and 65 μm in diameter and thickness respectively, is employed to actuate a proposed micropump. In micro pumping operation, the fluid flow effects on the actuation and dynamic response of an oscillating membrane are curial to the design of the micropump. Therefore, the resonant frequency of this micro device is estimated considering the added mass and fluid damping to understand the behaviors of the valveless micropump. In this study, the membrane actuation is implemented by a miniaturized electromagnet, which provides an external time-varying magnetic field. The magnetic force on the membrane is proportional to the gradient of the magnetic field and the magnetization of the micro particles embedded in the membrane. The alternating attractive and repulsive magnetic forces on this composite membrane are computed by Finite Element Analysis (FEA). The basic design issues of the electromagnetic actuator involving air gaps, input current signals, and distribution of magnetic flux in the magnetic circuit are presented. Moreover, the magnetic-structure coupling analysis is conducted to determine the maximum deformation and stresses on the membrane, which result from the action of these magnetic forces. Finally, frequency-dependent flow rate of a dual-chamber configuration micropump has been studied. The pumping rate increases almost linearly with the excitation frequency at low ranges and there exists resonant frequencies at which the flow rate will reach a maximum value. After the flow rate peaks, the pumping rate decreases sharply along with the actuating frequencies. The maximum flow rate for the dual-chamber remains at 27.73μl/min under 0.4 A input current with an excitation frequency of 3 Hz. For comparison, a single-chamber micropump reaches a maximum flow rate of 19.61μl/min with a resonant frequency of 4.36 Hz under the same condition.
    keyword(s): Design , Drug delivery systems AND Micropumps ,
    • Download: (38.44Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Design and Characterization of a Magnetically Driven Valveless Micropump for Drug Delivery

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/141641
    Collections
    • Journal of Medical Devices

    Show full item record

    contributor authorY. Zhou
    contributor authorF. Amirouche
    contributor authorL. Chen
    date accessioned2017-05-09T00:34:47Z
    date available2017-05-09T00:34:47Z
    date copyrightJune, 2009
    date issued2009
    identifier issn1932-6181
    identifier otherJMDOA4-28002#027553_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/141641
    description abstractMicropump, an actuation source to transfer the fluid from reservoir to the target place with accuracy and reliability, plays an important role in microfluidic devices. A broad range of micropump applications in biomedical fields are found in the fluid fine regulation and precise control systems for implantable drug delivery, chemical and biological detection, as well as blood transport in cardiology system. A polydimethylsiloxane (PDMS) magnetic composite membrane based on microfabrication with dimensions of 6 mm and 65 μm in diameter and thickness respectively, is employed to actuate a proposed micropump. In micro pumping operation, the fluid flow effects on the actuation and dynamic response of an oscillating membrane are curial to the design of the micropump. Therefore, the resonant frequency of this micro device is estimated considering the added mass and fluid damping to understand the behaviors of the valveless micropump. In this study, the membrane actuation is implemented by a miniaturized electromagnet, which provides an external time-varying magnetic field. The magnetic force on the membrane is proportional to the gradient of the magnetic field and the magnetization of the micro particles embedded in the membrane. The alternating attractive and repulsive magnetic forces on this composite membrane are computed by Finite Element Analysis (FEA). The basic design issues of the electromagnetic actuator involving air gaps, input current signals, and distribution of magnetic flux in the magnetic circuit are presented. Moreover, the magnetic-structure coupling analysis is conducted to determine the maximum deformation and stresses on the membrane, which result from the action of these magnetic forces. Finally, frequency-dependent flow rate of a dual-chamber configuration micropump has been studied. The pumping rate increases almost linearly with the excitation frequency at low ranges and there exists resonant frequencies at which the flow rate will reach a maximum value. After the flow rate peaks, the pumping rate decreases sharply along with the actuating frequencies. The maximum flow rate for the dual-chamber remains at 27.73μl/min under 0.4 A input current with an excitation frequency of 3 Hz. For comparison, a single-chamber micropump reaches a maximum flow rate of 19.61μl/min with a resonant frequency of 4.36 Hz under the same condition.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDesign and Characterization of a Magnetically Driven Valveless Micropump for Drug Delivery
    typeJournal Paper
    journal volume3
    journal issue2
    journal titleJournal of Medical Devices
    identifier doi10.1115/1.3147558
    journal fristpage27553
    identifier eissn1932-619X
    keywordsDesign
    keywordsDrug delivery systems AND Micropumps
    treeJournal of Medical Devices:;2009:;volume( 003 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian