YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Medical Devices
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Medical Devices
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Material Orientation Artifact Studies in Magnetic Resonance Imaging

    Source: Journal of Medical Devices:;2009:;volume( 003 ):;issue: 002::page 27520
    Author:
    S. McDonald
    ,
    N. Knutson
    ,
    A. Erdman
    DOI: 10.1115/1.3136841
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: With the increased interest of MRI guided interventional procedures in modern medical treatments, image distortion and artifact formation based on material selection and orientation within the MRI scanner are central concerns for precise object localization. The goal of this study was to illustrate the artifact behavior of materials with various magnetic susceptibilities and radio frequency conductivity values corresponding to object orientation relative to the primary magnetic field. To test the effects of orientation on image distortion and image artifacts, 0.125 inch cylindrical test samples of various materials were imaged using a clinical Siemens 3 Tesla MR scanner. Modern medical instrumentation and surgical utensils are typically made from highly paramagnetic materials (e.g., titanium, nitinol, or stainless steel) which also have high RF conductivities. The combination of these two material properties cause both primary magnetic field (B0) and RF field (B1) inhomogeneities which lead to local image distortions. A change in the local magnetic field induces errors within the slice selection gradient, as the precessional frequency of the proton nuclei in the desired region of interest will not correspond to the exact spatial location on the object and will excite a broader region due to the RF conductivity of the material. Conversely to more traditional surgical materials, diamagnetic materials (e.g., bismuth, pyrolytic carbon, water, most plastics) are free from the susceptibility artifacts due to B0 inhomogeneities and thus offer a level of MR compatibility that traditional materials cannot. A specific testing phantom was built to fit a clinical wrist coil. The phantom consisted of an aqueous solution of gadolinium and copper sulfate to increase image contrast and a rotatable turret post for sample positioning. The particular materials studied were chosen to demonstrate the wide variation in both magnetic susceptibility values and RF conductivities (e.g., 6A1-4V titanium, 316L stainless steel, carbon fiber, 6061 T6 aluminum, brass, copper, beryllium copper). ImageJ software measured the overall pixel area and major dimension of each MR image artifact at 0, 45, and 90 degree orientations of each test sample relative to B0. The results of the measurements indicated measurable increases in signal are of the paramagnetic and highly conductive test specimens orientated orthogonal to the primary magnetic field. For instance, two common medical grade materials such as 316L stainless steel and 6Al-4V titanium resulted in artifact area increases of 770±10% and 234±10%, respectively, relative to the actual cross sectional area of the sample. Conversely, the more diamagnetic materials, carbon fiber and beryllium copper demonstrated increased artifact areas of 8±10% and 12±10%, respectively. Errors in artifact area percentage growth measurement are primarily attributed to manual image segmentation and variation in coil positioning within the MRI bore. The results indicate that MR image artifact size and object distortion characteristics can be influenced by both material selection and object orientation relative to the primary magnetic field. In the interest of accurate navigation of image guided equipment and devices, interventional devices should be tested for image distortion in multiple orientations. This work is supported by MIMTeC, a National Science Foundation Industry University Collaborative Research Center and by NIH Grant P30 NS057091.
    • Download: (38.12Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Material Orientation Artifact Studies in Magnetic Resonance Imaging

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/141583
    Collections
    • Journal of Medical Devices

    Show full item record

    contributor authorS. McDonald
    contributor authorN. Knutson
    contributor authorA. Erdman
    date accessioned2017-05-09T00:34:43Z
    date available2017-05-09T00:34:43Z
    date copyrightJune, 2009
    date issued2009
    identifier issn1932-6181
    identifier otherJMDOA4-28002#027520_2.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/141583
    description abstractWith the increased interest of MRI guided interventional procedures in modern medical treatments, image distortion and artifact formation based on material selection and orientation within the MRI scanner are central concerns for precise object localization. The goal of this study was to illustrate the artifact behavior of materials with various magnetic susceptibilities and radio frequency conductivity values corresponding to object orientation relative to the primary magnetic field. To test the effects of orientation on image distortion and image artifacts, 0.125 inch cylindrical test samples of various materials were imaged using a clinical Siemens 3 Tesla MR scanner. Modern medical instrumentation and surgical utensils are typically made from highly paramagnetic materials (e.g., titanium, nitinol, or stainless steel) which also have high RF conductivities. The combination of these two material properties cause both primary magnetic field (B0) and RF field (B1) inhomogeneities which lead to local image distortions. A change in the local magnetic field induces errors within the slice selection gradient, as the precessional frequency of the proton nuclei in the desired region of interest will not correspond to the exact spatial location on the object and will excite a broader region due to the RF conductivity of the material. Conversely to more traditional surgical materials, diamagnetic materials (e.g., bismuth, pyrolytic carbon, water, most plastics) are free from the susceptibility artifacts due to B0 inhomogeneities and thus offer a level of MR compatibility that traditional materials cannot. A specific testing phantom was built to fit a clinical wrist coil. The phantom consisted of an aqueous solution of gadolinium and copper sulfate to increase image contrast and a rotatable turret post for sample positioning. The particular materials studied were chosen to demonstrate the wide variation in both magnetic susceptibility values and RF conductivities (e.g., 6A1-4V titanium, 316L stainless steel, carbon fiber, 6061 T6 aluminum, brass, copper, beryllium copper). ImageJ software measured the overall pixel area and major dimension of each MR image artifact at 0, 45, and 90 degree orientations of each test sample relative to B0. The results of the measurements indicated measurable increases in signal are of the paramagnetic and highly conductive test specimens orientated orthogonal to the primary magnetic field. For instance, two common medical grade materials such as 316L stainless steel and 6Al-4V titanium resulted in artifact area increases of 770±10% and 234±10%, respectively, relative to the actual cross sectional area of the sample. Conversely, the more diamagnetic materials, carbon fiber and beryllium copper demonstrated increased artifact areas of 8±10% and 12±10%, respectively. Errors in artifact area percentage growth measurement are primarily attributed to manual image segmentation and variation in coil positioning within the MRI bore. The results indicate that MR image artifact size and object distortion characteristics can be influenced by both material selection and object orientation relative to the primary magnetic field. In the interest of accurate navigation of image guided equipment and devices, interventional devices should be tested for image distortion in multiple orientations. This work is supported by MIMTeC, a National Science Foundation Industry University Collaborative Research Center and by NIH Grant P30 NS057091.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMaterial Orientation Artifact Studies in Magnetic Resonance Imaging
    typeJournal Paper
    journal volume3
    journal issue2
    journal titleJournal of Medical Devices
    identifier doi10.1115/1.3136841
    journal fristpage27520
    identifier eissn1932-619X
    treeJournal of Medical Devices:;2009:;volume( 003 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian