YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Medical Devices
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Medical Devices
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Real-Time, In Vivo Measurement of Contact Pressures at a Knee Arthroplasty

    Source: Journal of Medical Devices:;2009:;volume( 003 ):;issue: 002::page 27505
    Author:
    B. Pereles
    ,
    E. Tan
    ,
    K. Ong
    DOI: 10.1115/1.3134840
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: There is a need to measure contact pressures at the femoral component and tibia plate of a knee arthroplasty implant to determine the wear and tear of the polyethylene (PE) insert of the implant. Today, most pressure monitoring systems for knee arthroplasty implants are either limited to in vitro or intraoperative use, or cannot measure contact pressures at the polyethylene surface. Here, we are developing a wireless passive sensor system for measuring the contact pressure at the knee arthroplasty in vivo. The sensor system is made of a pressure-sensitive magnetic layer embedded under the top surface of a PE insert used for mapping the contact pressures with the femoral components. The pressure-sensing layer consists of a grid of pressure and stress sensitive magnetoelastic thin strips that alter their magnetic properties with applied force. Measurements are taken at pressure points located at the crossings of the grid. The magnetization of each sensing strip is remotely measured by using an AC magnetic field to excite the material to generate higher-frequency fields, which are then detected through external detection coils. The responses of these sensing strips are fed into an algorithm to determine the pressure loadings at all pressure points, which allows for real-time, in vivo determination of pressure profiles on the PE insert. By using an array of magnetoelastic sensing strips, we have demonstrated the remote detection of pressure across a surface. The 2nd order harmonic amplitude of a 30 mm×1.5mm magnetoelastic strip decreased linearly with increasing pressure. For this sensing strip, the rate of decrease was about 0.1 (normalized to unstressed signal level) per 200 kPa. An algorithm was also developed to determine the pressures at all pressure points from the responses of the sensing strips. Experimental results have shown that the algorithm can accurately map the pressure profile of a 3×3 sensing strip array. Further works include developing a fabrication process for safely embedding the sensing strips into a PE insert, and modifying the algorithm for a larger sensing strip array.
    • Download: (34.43Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Real-Time, In Vivo Measurement of Contact Pressures at a Knee Arthroplasty

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/141550
    Collections
    • Journal of Medical Devices

    Show full item record

    contributor authorB. Pereles
    contributor authorE. Tan
    contributor authorK. Ong
    date accessioned2017-05-09T00:34:41Z
    date available2017-05-09T00:34:41Z
    date copyrightJune, 2009
    date issued2009
    identifier issn1932-6181
    identifier otherJMDOA4-28002#027505_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/141550
    description abstractThere is a need to measure contact pressures at the femoral component and tibia plate of a knee arthroplasty implant to determine the wear and tear of the polyethylene (PE) insert of the implant. Today, most pressure monitoring systems for knee arthroplasty implants are either limited to in vitro or intraoperative use, or cannot measure contact pressures at the polyethylene surface. Here, we are developing a wireless passive sensor system for measuring the contact pressure at the knee arthroplasty in vivo. The sensor system is made of a pressure-sensitive magnetic layer embedded under the top surface of a PE insert used for mapping the contact pressures with the femoral components. The pressure-sensing layer consists of a grid of pressure and stress sensitive magnetoelastic thin strips that alter their magnetic properties with applied force. Measurements are taken at pressure points located at the crossings of the grid. The magnetization of each sensing strip is remotely measured by using an AC magnetic field to excite the material to generate higher-frequency fields, which are then detected through external detection coils. The responses of these sensing strips are fed into an algorithm to determine the pressure loadings at all pressure points, which allows for real-time, in vivo determination of pressure profiles on the PE insert. By using an array of magnetoelastic sensing strips, we have demonstrated the remote detection of pressure across a surface. The 2nd order harmonic amplitude of a 30 mm×1.5mm magnetoelastic strip decreased linearly with increasing pressure. For this sensing strip, the rate of decrease was about 0.1 (normalized to unstressed signal level) per 200 kPa. An algorithm was also developed to determine the pressures at all pressure points from the responses of the sensing strips. Experimental results have shown that the algorithm can accurately map the pressure profile of a 3×3 sensing strip array. Further works include developing a fabrication process for safely embedding the sensing strips into a PE insert, and modifying the algorithm for a larger sensing strip array.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleReal-Time, In Vivo Measurement of Contact Pressures at a Knee Arthroplasty
    typeJournal Paper
    journal volume3
    journal issue2
    journal titleJournal of Medical Devices
    identifier doi10.1115/1.3134840
    journal fristpage27505
    identifier eissn1932-619X
    treeJournal of Medical Devices:;2009:;volume( 003 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian