YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Medical Devices
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Medical Devices
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Single Channel Hybrid FES Gait Assist System

    Source: Journal of Medical Devices:;2009:;volume( 003 ):;issue: 002::page 27502
    Author:
    A. Kangude
    ,
    B. Burgstahler
    ,
    J. Katsys
    ,
    W. Durfee
    DOI: 10.1115/1.3134763
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Loss of mobility due to lower limb paralysis is common consequence of thoracic level spinal cord injury (SCI). In the US there are approximately 253,000 persons with SCI. The wheelchair is the most common form of mobility for individuals with paraplegia but there remains a need for assistive technology that can enable paraplegics to walk and reach in the periphery of wheelchair. A new concept is presented that combines functional electrical stimulation (FES) with an energy storing orthosis (ESO) that contains a fluid power system to store and transfer energy during the gait cycle. Elastic energy storage elements on the orthosis hip and knee joints hold the leg in a flexed equilibrium position. Stimulation of the quadriceps extends the knee, placing excess energy in both the equilibrium spring and an energy transfer element. The stored energy is transferred to the hip where it is discharged and used to extend the hip against its equilibrium spring which also aids in forward progression. A new step is initiated by releasing the hip and knee joints from the straight leg position to the flexed position. The concept is realized using gas springs and pneumatic cylinders. Gas springs act as flexed energy storage elements. Lower air cylinder and the tubing acts as an accumulator and the upper cylinder acts as hip joint actuator. The system uses 2 way proportional solenoid actuated pneumatic valves for control during extension. The conceptual design of the ESO was completed and implemented in a dynamic simulation model (MSC ADAMS) and in a benchtop prototype for engineering measurements. Of the 14 joules of energy available from quadriceps, 8.9 joules of energy is utilized for doing work against springs and inertial forces; 5.4 joules is stored in pneumatic system; of which 1.4 joules is required for hip extensions and the remaining will be used for forward progression. No studies were conducted with human subjects. A hydraulic fluid power system was investigated for better control and braking possibilities but was not adopted because of difficulities in accumulator design and high fluid friction losses. A Matlab code was used to calculate the torques required at joints to support standing. Commerical braces are being used for improved user comfort. A wrap spring brake is being designed to maintain standing posture without FES or any active energy input. Technical feasibility of the ESO prototype will be evaluated using two subjects with paraplegia.
    • Download: (36.54Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Single Channel Hybrid FES Gait Assist System

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/141543
    Collections
    • Journal of Medical Devices

    Show full item record

    contributor authorA. Kangude
    contributor authorB. Burgstahler
    contributor authorJ. Katsys
    contributor authorW. Durfee
    date accessioned2017-05-09T00:34:40Z
    date available2017-05-09T00:34:40Z
    date copyrightJune, 2009
    date issued2009
    identifier issn1932-6181
    identifier otherJMDOA4-28002#027502_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/141543
    description abstractLoss of mobility due to lower limb paralysis is common consequence of thoracic level spinal cord injury (SCI). In the US there are approximately 253,000 persons with SCI. The wheelchair is the most common form of mobility for individuals with paraplegia but there remains a need for assistive technology that can enable paraplegics to walk and reach in the periphery of wheelchair. A new concept is presented that combines functional electrical stimulation (FES) with an energy storing orthosis (ESO) that contains a fluid power system to store and transfer energy during the gait cycle. Elastic energy storage elements on the orthosis hip and knee joints hold the leg in a flexed equilibrium position. Stimulation of the quadriceps extends the knee, placing excess energy in both the equilibrium spring and an energy transfer element. The stored energy is transferred to the hip where it is discharged and used to extend the hip against its equilibrium spring which also aids in forward progression. A new step is initiated by releasing the hip and knee joints from the straight leg position to the flexed position. The concept is realized using gas springs and pneumatic cylinders. Gas springs act as flexed energy storage elements. Lower air cylinder and the tubing acts as an accumulator and the upper cylinder acts as hip joint actuator. The system uses 2 way proportional solenoid actuated pneumatic valves for control during extension. The conceptual design of the ESO was completed and implemented in a dynamic simulation model (MSC ADAMS) and in a benchtop prototype for engineering measurements. Of the 14 joules of energy available from quadriceps, 8.9 joules of energy is utilized for doing work against springs and inertial forces; 5.4 joules is stored in pneumatic system; of which 1.4 joules is required for hip extensions and the remaining will be used for forward progression. No studies were conducted with human subjects. A hydraulic fluid power system was investigated for better control and braking possibilities but was not adopted because of difficulities in accumulator design and high fluid friction losses. A Matlab code was used to calculate the torques required at joints to support standing. Commerical braces are being used for improved user comfort. A wrap spring brake is being designed to maintain standing posture without FES or any active energy input. Technical feasibility of the ESO prototype will be evaluated using two subjects with paraplegia.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleSingle Channel Hybrid FES Gait Assist System
    typeJournal Paper
    journal volume3
    journal issue2
    journal titleJournal of Medical Devices
    identifier doi10.1115/1.3134763
    journal fristpage27502
    identifier eissn1932-619X
    treeJournal of Medical Devices:;2009:;volume( 003 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian