YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Time-Dependent Reliability Estimation for Dynamic Problems Using a Niching Genetic Algorithm

    Source: Journal of Mechanical Design:;2009:;volume( 131 ):;issue: 007::page 71009
    Author:
    Jing Li
    ,
    Zissimos P. Mourelatos
    DOI: 10.1115/1.3149842
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A time-dependent reliability analysis method is presented for dynamic systems under uncertainty using a niching genetic algorithm (GA). The system response is modeled as a parametric random process. A double-loop optimization algorithm is used. The inner loop calculates the maximum response in time, using a hybrid (global-local) optimization algorithm. A global GA quickly locates the vicinity of the global maximum, and a gradient-based optimizer subsequently refines its location. A time-dependent problem is, therefore, transformed into a time-independent one. The outer loop calculates multiple most probable points (MPPs), which are commonly encountered in vibration problems. The dominant MPPs with the highest contribution to the probability of failure are identified. A niching GA is used because of its ability to simultaneously identify multiple solutions. All potential MPPs are initially identified approximately, and their location is efficiently refined using a gradient-based optimizer with local metamodels. For computational efficiency, the local metamodels are built using mostly available sample points from the niching GA. Among all MPPs, the significant and independent ones are identified using a correlation analysis. Approximate limit states are built at the identified MPPs, and the system failure probability is estimated using bimodal bounds. The vibration response of a cantilever plate under a random oscillating pressure load and a point load is used to illustrate the present method and demonstrate its robustness and efficiency. A finite-element model is used to calculate the plate response.
    • Download: (1.607Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Time-Dependent Reliability Estimation for Dynamic Problems Using a Niching Genetic Algorithm

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/141360
    Collections
    • Journal of Mechanical Design

    Show full item record

    contributor authorJing Li
    contributor authorZissimos P. Mourelatos
    date accessioned2017-05-09T00:34:19Z
    date available2017-05-09T00:34:19Z
    date copyrightJuly, 2009
    date issued2009
    identifier issn1050-0472
    identifier otherJMDEDB-27903#071009_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/141360
    description abstractA time-dependent reliability analysis method is presented for dynamic systems under uncertainty using a niching genetic algorithm (GA). The system response is modeled as a parametric random process. A double-loop optimization algorithm is used. The inner loop calculates the maximum response in time, using a hybrid (global-local) optimization algorithm. A global GA quickly locates the vicinity of the global maximum, and a gradient-based optimizer subsequently refines its location. A time-dependent problem is, therefore, transformed into a time-independent one. The outer loop calculates multiple most probable points (MPPs), which are commonly encountered in vibration problems. The dominant MPPs with the highest contribution to the probability of failure are identified. A niching GA is used because of its ability to simultaneously identify multiple solutions. All potential MPPs are initially identified approximately, and their location is efficiently refined using a gradient-based optimizer with local metamodels. For computational efficiency, the local metamodels are built using mostly available sample points from the niching GA. Among all MPPs, the significant and independent ones are identified using a correlation analysis. Approximate limit states are built at the identified MPPs, and the system failure probability is estimated using bimodal bounds. The vibration response of a cantilever plate under a random oscillating pressure load and a point load is used to illustrate the present method and demonstrate its robustness and efficiency. A finite-element model is used to calculate the plate response.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleTime-Dependent Reliability Estimation for Dynamic Problems Using a Niching Genetic Algorithm
    typeJournal Paper
    journal volume131
    journal issue7
    journal titleJournal of Mechanical Design
    identifier doi10.1115/1.3149842
    journal fristpage71009
    identifier eissn1528-9001
    treeJournal of Mechanical Design:;2009:;volume( 131 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian