YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Optimal Design of Measurement Point Layout for Workpiece Localization

    Source: Journal of Manufacturing Science and Engineering:;2009:;volume( 131 ):;issue: 001::page 11006
    Author:
    LiMin Zhu
    ,
    HongGen Luo
    ,
    Han Ding
    DOI: 10.1115/1.3039515
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper presents a methodology for the optimal design of the measurement point layout for 3D workpiece localization in the presence of part surface errors and measurement errors. A number of frame-invariant norms of the infinitesimal rigid body displacement, two of which give Riemann metrics on the Euclidean group, are defined to quantify the localization accuracy required by manufacturing processes. Then, two types of indices, both frame invariant and scale invariant, are derived to characterize the sensitivities of the accuracy measures to the sampling errors at the measurement points. With a dense set of discrete points on the workpiece datum surfaces predefined as candidates for measurement, planning of probing points to accurately recover part location is modeled as a combinatorial problem focusing on minimizing the accuracy sensitivity index. It is shown that if the number of measurement points is large enough, there is no need to optimize their positions, and that if the systematic error component of the sampled geometric errors is not negligible as compared with the random error component, addition of measurement points offers no guarantee of a smaller upper bound of the localization error. A heuristic floating forward search algorithm is employed to efficiently find a near-optimal solution. Two relevant problems of sensor placement optimization for geometric imperfection diagnosis and fixture fault diagnosis are also briefly revisited in the same framework. Examples are given to illustrate the effectiveness of the proposed design criteria and algorithm.
    • Download: (838.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Optimal Design of Measurement Point Layout for Workpiece Localization

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/141265
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorLiMin Zhu
    contributor authorHongGen Luo
    contributor authorHan Ding
    date accessioned2017-05-09T00:34:11Z
    date available2017-05-09T00:34:11Z
    date copyrightFebruary, 2009
    date issued2009
    identifier issn1087-1357
    identifier otherJMSEFK-28073#011006_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/141265
    description abstractThis paper presents a methodology for the optimal design of the measurement point layout for 3D workpiece localization in the presence of part surface errors and measurement errors. A number of frame-invariant norms of the infinitesimal rigid body displacement, two of which give Riemann metrics on the Euclidean group, are defined to quantify the localization accuracy required by manufacturing processes. Then, two types of indices, both frame invariant and scale invariant, are derived to characterize the sensitivities of the accuracy measures to the sampling errors at the measurement points. With a dense set of discrete points on the workpiece datum surfaces predefined as candidates for measurement, planning of probing points to accurately recover part location is modeled as a combinatorial problem focusing on minimizing the accuracy sensitivity index. It is shown that if the number of measurement points is large enough, there is no need to optimize their positions, and that if the systematic error component of the sampled geometric errors is not negligible as compared with the random error component, addition of measurement points offers no guarantee of a smaller upper bound of the localization error. A heuristic floating forward search algorithm is employed to efficiently find a near-optimal solution. Two relevant problems of sensor placement optimization for geometric imperfection diagnosis and fixture fault diagnosis are also briefly revisited in the same framework. Examples are given to illustrate the effectiveness of the proposed design criteria and algorithm.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleOptimal Design of Measurement Point Layout for Workpiece Localization
    typeJournal Paper
    journal volume131
    journal issue1
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.3039515
    journal fristpage11006
    identifier eissn1528-8935
    treeJournal of Manufacturing Science and Engineering:;2009:;volume( 131 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian