YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Transient Method for Convective Heat Transfer Measurement With Lateral Conduction—Part II: Application to an Isolated Spherical Roughness Element

    Source: Journal of Heat Transfer:;2009:;volume( 131 ):;issue: 001::page 11302
    Author:
    J. Bons
    ,
    Daniel Fletcher
    ,
    Brad Borchert
    DOI: 10.1115/1.2976785
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The effect of lateral conduction on convective heat transfer measurements using a transient infrared technique over an isolated spherical roughness element (bump) is evaluated. Comparisons are made between a full 3D finite-volume analysis and a simpler 1D transient conduction model. The surface temperature history was measured with a high resolution infrared camera during an impulsively started hot-gas flow at a flow Reynolds number of 860,000. The boundary layer was turbulent with the bump heights equivalent to 0.75, 1.5, and 3 times the boundary layer momentum thickness. When considering transient conduction effects only in the bump wake, the 1D approximate method underestimates the actual Stanton number estimated with the 3D model. This discrepancy is only 10% for a 75% change in St number occurring over a surface distance of 10 mm (the half-width of the wake). When the actual bump topology is accounted for in estimating the Stanton number on the bump itself with the 3D analysis technique, the increased surface area of the finite-volume cells on the protruding bump actually decreases the predicted value of St locally. The net result is that the two effects can cancel each other, and in some cases the 1D approximate technique can provide a reasonably accurate estimate of the surface heat transfer without the added complexity of the 3D finite-volume method. For the case of the largest bump tested, with maximum surface angularity exceeding 60 deg, the correction for 3D topology yields a 1D St estimate that is within 20–30% of the 3D estimate over much of the bump surface. These observed effects are valid for transient measurement techniques while the opposite is true for steady-state measurement techniques.
    keyword(s): Flow (Dynamics) , Temperature , Heat transfer , Heat conduction , Surface roughness , Wakes , Convection , Boundary layers , Temperature gradients AND Steady state ,
    • Download: (847.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Transient Method for Convective Heat Transfer Measurement With Lateral Conduction—Part II: Application to an Isolated Spherical Roughness Element

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/141137
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorJ. Bons
    contributor authorDaniel Fletcher
    contributor authorBrad Borchert
    date accessioned2017-05-09T00:33:57Z
    date available2017-05-09T00:33:57Z
    date copyrightJanuary, 2009
    date issued2009
    identifier issn0022-1481
    identifier otherJHTRAO-27853#011302_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/141137
    description abstractThe effect of lateral conduction on convective heat transfer measurements using a transient infrared technique over an isolated spherical roughness element (bump) is evaluated. Comparisons are made between a full 3D finite-volume analysis and a simpler 1D transient conduction model. The surface temperature history was measured with a high resolution infrared camera during an impulsively started hot-gas flow at a flow Reynolds number of 860,000. The boundary layer was turbulent with the bump heights equivalent to 0.75, 1.5, and 3 times the boundary layer momentum thickness. When considering transient conduction effects only in the bump wake, the 1D approximate method underestimates the actual Stanton number estimated with the 3D model. This discrepancy is only 10% for a 75% change in St number occurring over a surface distance of 10 mm (the half-width of the wake). When the actual bump topology is accounted for in estimating the Stanton number on the bump itself with the 3D analysis technique, the increased surface area of the finite-volume cells on the protruding bump actually decreases the predicted value of St locally. The net result is that the two effects can cancel each other, and in some cases the 1D approximate technique can provide a reasonably accurate estimate of the surface heat transfer without the added complexity of the 3D finite-volume method. For the case of the largest bump tested, with maximum surface angularity exceeding 60 deg, the correction for 3D topology yields a 1D St estimate that is within 20–30% of the 3D estimate over much of the bump surface. These observed effects are valid for transient measurement techniques while the opposite is true for steady-state measurement techniques.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleTransient Method for Convective Heat Transfer Measurement With Lateral Conduction—Part II: Application to an Isolated Spherical Roughness Element
    typeJournal Paper
    journal volume131
    journal issue1
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.2976785
    journal fristpage11302
    identifier eissn1528-8943
    keywordsFlow (Dynamics)
    keywordsTemperature
    keywordsHeat transfer
    keywordsHeat conduction
    keywordsSurface roughness
    keywordsWakes
    keywordsConvection
    keywordsBoundary layers
    keywordsTemperature gradients AND Steady state
    treeJournal of Heat Transfer:;2009:;volume( 131 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian