YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Mixed Convection Along a Semi-Infinite Vertical Flat Plate With Uniform Surface Heat Flux

    Source: Journal of Heat Transfer:;2009:;volume( 131 ):;issue: 002::page 22502
    Author:
    S. Ghosh Moulic
    ,
    L. S. Yao
    DOI: 10.1115/1.2995725
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Mixed-convection boundary-layer flow over a heated semi-infinite vertical flat plate with uniform surface heat flux, placed in a uniform isothermal upward freestream, has been investigated. Near the leading edge, the effect of natural convection can be treated as a small perturbation term. The effects of natural convection are accumulative and increase downstream. In the second region, downstream of the leading-edge region, natural convection eventually becomes as important as forced convection. The boundary-layer equations have been solved by an adaptive finite-difference marching technique. The numerical solution indicates that the series solution of the leading-edge region is included in that of the second region. This property is shared by many developing flows. However, the series solutions of local similarity or local nonsimilarity are only valid for very small distances from the leading edge. Numerical results for the local skin-friction factor, wall temperature, and local Nusselt number are presented for Pr=1 for a wide range of Grx*∕Rex5∕2, where Grx* is a local modified Grashof number and Rex is a local Reynolds number. The results indicate that cfxRex1∕2 and NuxRex–1∕2 increase monotonically with distance from the leading edge, where cfx is the local skin-friction factor and Nux is the local Nusselt number, and approach the free-convection limit at large values of Grx*∕Rex5∕2, although the velocity distribution differs from the velocity distribution in a free-convection boundary layer.
    keyword(s): Boundary layers , Forced convection , Mixed convection , Natural convection , Equations , Flat plates , Flow (Dynamics) , Heat flux , Wall temperature , Buoyancy AND Force ,
    • Download: (353.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Mixed Convection Along a Semi-Infinite Vertical Flat Plate With Uniform Surface Heat Flux

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/141129
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorS. Ghosh Moulic
    contributor authorL. S. Yao
    date accessioned2017-05-09T00:33:56Z
    date available2017-05-09T00:33:56Z
    date copyrightFebruary, 2009
    date issued2009
    identifier issn0022-1481
    identifier otherJHTRAO-27855#022502_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/141129
    description abstractMixed-convection boundary-layer flow over a heated semi-infinite vertical flat plate with uniform surface heat flux, placed in a uniform isothermal upward freestream, has been investigated. Near the leading edge, the effect of natural convection can be treated as a small perturbation term. The effects of natural convection are accumulative and increase downstream. In the second region, downstream of the leading-edge region, natural convection eventually becomes as important as forced convection. The boundary-layer equations have been solved by an adaptive finite-difference marching technique. The numerical solution indicates that the series solution of the leading-edge region is included in that of the second region. This property is shared by many developing flows. However, the series solutions of local similarity or local nonsimilarity are only valid for very small distances from the leading edge. Numerical results for the local skin-friction factor, wall temperature, and local Nusselt number are presented for Pr=1 for a wide range of Grx*∕Rex5∕2, where Grx* is a local modified Grashof number and Rex is a local Reynolds number. The results indicate that cfxRex1∕2 and NuxRex–1∕2 increase monotonically with distance from the leading edge, where cfx is the local skin-friction factor and Nux is the local Nusselt number, and approach the free-convection limit at large values of Grx*∕Rex5∕2, although the velocity distribution differs from the velocity distribution in a free-convection boundary layer.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMixed Convection Along a Semi-Infinite Vertical Flat Plate With Uniform Surface Heat Flux
    typeJournal Paper
    journal volume131
    journal issue2
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.2995725
    journal fristpage22502
    identifier eissn1528-8943
    keywordsBoundary layers
    keywordsForced convection
    keywordsMixed convection
    keywordsNatural convection
    keywordsEquations
    keywordsFlat plates
    keywordsFlow (Dynamics)
    keywordsHeat flux
    keywordsWall temperature
    keywordsBuoyancy AND Force
    treeJournal of Heat Transfer:;2009:;volume( 131 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian