YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Correlations of Wave Characteristics for a Liquid Film Falling Down Along a Vertical Wall

    Source: Journal of Heat Transfer:;2009:;volume( 131 ):;issue: 008::page 82901
    Author:
    Yasuo Koizumi
    ,
    Ryou Enari
    ,
    Hiroyasu Ohtake
    DOI: 10.1115/1.3084133
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The behavior of a liquid film that flows down countercurrently along the inner surface of a circular pipe was examined. In the experiments of the present study, silicone oils of 500 cS, 1000 cS, and 3000 cS, as well as water, were used as the liquid phase. The gas phase was air. The vertically oriented test section was a circular pipe of 30 mm in inner diameter and 5.4 m in length. The substrate thickness of the silicone films, the film Reynolds numbers of which were quite low, was close to the mean film thickness, while the water film substrate was much thinner than the mean film thickness. Waves were observed on the substrate. Waves of a certain amplitude were confirmed to exist, even on the silicone films near the flooding occurrence, where the film Reynolds number was quite low. The mean film thicknesses of the silicone films, as well as that of the water film, were well expressed by applying the universal velocity profile to the film flow. When the film Reynolds number was lower than 600, the wave velocity was well predicted as the velocity of small perturbation waves on a laminar film. As the film Reynolds number became large, the wave velocity became slower than the small perturbation wave velocity. The correlation for the wavelength was developed based on the present experimental results. Combining this correlation with the Nosoko correlations and modifying the constants and exponents of the parameters in the equations, new correlations for the wave velocity and maximum film thickness were proposed. These new correlations were used to predict the wave velocity and the maximum film thickness to an accuracy of within 15%.
    • Download: (1.388Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Correlations of Wave Characteristics for a Liquid Film Falling Down Along a Vertical Wall

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/141017
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorYasuo Koizumi
    contributor authorRyou Enari
    contributor authorHiroyasu Ohtake
    date accessioned2017-05-09T00:33:44Z
    date available2017-05-09T00:33:44Z
    date copyrightAugust, 2009
    date issued2009
    identifier issn0022-1481
    identifier otherJHTRAO-27867#082901_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/141017
    description abstractThe behavior of a liquid film that flows down countercurrently along the inner surface of a circular pipe was examined. In the experiments of the present study, silicone oils of 500 cS, 1000 cS, and 3000 cS, as well as water, were used as the liquid phase. The gas phase was air. The vertically oriented test section was a circular pipe of 30 mm in inner diameter and 5.4 m in length. The substrate thickness of the silicone films, the film Reynolds numbers of which were quite low, was close to the mean film thickness, while the water film substrate was much thinner than the mean film thickness. Waves were observed on the substrate. Waves of a certain amplitude were confirmed to exist, even on the silicone films near the flooding occurrence, where the film Reynolds number was quite low. The mean film thicknesses of the silicone films, as well as that of the water film, were well expressed by applying the universal velocity profile to the film flow. When the film Reynolds number was lower than 600, the wave velocity was well predicted as the velocity of small perturbation waves on a laminar film. As the film Reynolds number became large, the wave velocity became slower than the small perturbation wave velocity. The correlation for the wavelength was developed based on the present experimental results. Combining this correlation with the Nosoko correlations and modifying the constants and exponents of the parameters in the equations, new correlations for the wave velocity and maximum film thickness were proposed. These new correlations were used to predict the wave velocity and the maximum film thickness to an accuracy of within 15%.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleCorrelations of Wave Characteristics for a Liquid Film Falling Down Along a Vertical Wall
    typeJournal Paper
    journal volume131
    journal issue8
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.3084133
    journal fristpage82901
    identifier eissn1528-8943
    treeJournal of Heat Transfer:;2009:;volume( 131 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian