YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Electron-Phonon Interaction Model and Its Application to Thermal Transport Simulation During Electrostatic Discharge Event in NMOS Transistor

    Source: Journal of Heat Transfer:;2009:;volume( 131 ):;issue: 009::page 92401
    Author:
    Jae Sik Jin
    ,
    Joon Sik Lee
    DOI: 10.1115/1.3133882
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: First, the electron-phonon interaction model, which has recently been developed by authors for thermal predictions within the silicon devices in micro/nanoscales, is verified through the comparison with the experimental measurement of average temperature rise in the channel region of a silicon-on-insulator (SOI) transistor. The effect of the silicon layer thickness of the SOI transistor on phonon thermal characteristics is also investigated. It is found that the thickness effect on the peak temperature of the optical phonon mode in the hot spot region is negligible due to its very low group velocity. Thus the acoustic phonons in a specific frequency band, which has the highest scattering rate with the optical phonons, experience relatively less reduction in the peak temperature as the silicon layer thickness increases. Second, the electron-phonon interaction model is applied to the transient thermal transport simulation during the electrostatic discharge (ESD) event in an n-type metal-oxide-semiconductor (NMOS) transistor. The evolution of the peak temperature in the hot spot region during the ESD event is simulated and compared with that obtained by the previous full phonon dispersion model, which treats the electron-phonon scattering as a volumetric heat source. The results show that the lower group velocity acoustic phonon modes (i.e., higher frequency) and optical mode of negligible group velocity acquire high energy density from electrons during the ESD event, which might cause the devices melting problem. The heat transfer rates by individual phonon modes are also examined, and it is found that the key parameter to determine the phonon heat transfer rate during the ESD event is the product of the phonon specific heat and the scattering rates with higher energy density phonons in the hot spot region.
    • Download: (777.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Electron-Phonon Interaction Model and Its Application to Thermal Transport Simulation During Electrostatic Discharge Event in NMOS Transistor

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/140982
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorJae Sik Jin
    contributor authorJoon Sik Lee
    date accessioned2017-05-09T00:33:38Z
    date available2017-05-09T00:33:38Z
    date copyrightSeptember, 2009
    date issued2009
    identifier issn0022-1481
    identifier otherJHTRAO-27870#092401_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/140982
    description abstractFirst, the electron-phonon interaction model, which has recently been developed by authors for thermal predictions within the silicon devices in micro/nanoscales, is verified through the comparison with the experimental measurement of average temperature rise in the channel region of a silicon-on-insulator (SOI) transistor. The effect of the silicon layer thickness of the SOI transistor on phonon thermal characteristics is also investigated. It is found that the thickness effect on the peak temperature of the optical phonon mode in the hot spot region is negligible due to its very low group velocity. Thus the acoustic phonons in a specific frequency band, which has the highest scattering rate with the optical phonons, experience relatively less reduction in the peak temperature as the silicon layer thickness increases. Second, the electron-phonon interaction model is applied to the transient thermal transport simulation during the electrostatic discharge (ESD) event in an n-type metal-oxide-semiconductor (NMOS) transistor. The evolution of the peak temperature in the hot spot region during the ESD event is simulated and compared with that obtained by the previous full phonon dispersion model, which treats the electron-phonon scattering as a volumetric heat source. The results show that the lower group velocity acoustic phonon modes (i.e., higher frequency) and optical mode of negligible group velocity acquire high energy density from electrons during the ESD event, which might cause the devices melting problem. The heat transfer rates by individual phonon modes are also examined, and it is found that the key parameter to determine the phonon heat transfer rate during the ESD event is the product of the phonon specific heat and the scattering rates with higher energy density phonons in the hot spot region.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleElectron-Phonon Interaction Model and Its Application to Thermal Transport Simulation During Electrostatic Discharge Event in NMOS Transistor
    typeJournal Paper
    journal volume131
    journal issue9
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.3133882
    journal fristpage92401
    identifier eissn1528-8943
    treeJournal of Heat Transfer:;2009:;volume( 131 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian