YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Integral Solution for Heat Transfer in Accelerating Turbulent Boundary Layers

    Source: Journal of Heat Transfer:;2009:;volume( 131 ):;issue: 011::page 111702
    Author:
    James Sucec
    DOI: 10.1115/1.3154649
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: An equilibrium thermal wake strength parameter is developed for a two-dimensional turbulent boundary layer flow and is then used in the combined thermal law of the wall and the wake to give an approximate temperature profile to insert into the integral form of the thermal energy equation. After the solution of the integral x momentum equation, the integral thermal energy equation is solved for the local Stanton number as a function of position x for accelerating turbulent boundary layers. A simple temperature distribution in the thermal “superlayer” is part of the present modeling. The analysis includes a dependence of the hydrodynamic and thermal wake strengths on the momentum thickness and enthalpy thickness Reynolds numbers, respectively. An approximate dependence of the turbulent Prandtl number, in the “log” region, on the strength of the favorable pressure gradient is proposed and incorporated into the solution. The resultant solution for the Stanton number distribution in accelerated turbulent flows is compared with experimental data in the literature. A comparison of the present predictions is also made to a finite difference solution, which uses the turbulent kinetic energy—turbulent dissipation model of turbulence, for a few cases of accelerating flows.
    keyword(s): Momentum , Flow (Dynamics) , Heat transfer , Turbulence , Reynolds number , Wakes , Modeling , Boundary layer turbulence , Equations , Prandtl number , Pressure gradient , Temperature profiles , Thickness , Thermal energy , Equilibrium (Physics) , Energy dissipation , Integral equations , Enthalpy , Boundary layers , Temperature distribution AND Kinetic energy ,
    • Download: (428.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Integral Solution for Heat Transfer in Accelerating Turbulent Boundary Layers

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/140940
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorJames Sucec
    date accessioned2017-05-09T00:33:33Z
    date available2017-05-09T00:33:33Z
    date copyrightNovember, 2009
    date issued2009
    identifier issn0022-1481
    identifier otherJHTRAO-27874#111702_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/140940
    description abstractAn equilibrium thermal wake strength parameter is developed for a two-dimensional turbulent boundary layer flow and is then used in the combined thermal law of the wall and the wake to give an approximate temperature profile to insert into the integral form of the thermal energy equation. After the solution of the integral x momentum equation, the integral thermal energy equation is solved for the local Stanton number as a function of position x for accelerating turbulent boundary layers. A simple temperature distribution in the thermal “superlayer” is part of the present modeling. The analysis includes a dependence of the hydrodynamic and thermal wake strengths on the momentum thickness and enthalpy thickness Reynolds numbers, respectively. An approximate dependence of the turbulent Prandtl number, in the “log” region, on the strength of the favorable pressure gradient is proposed and incorporated into the solution. The resultant solution for the Stanton number distribution in accelerated turbulent flows is compared with experimental data in the literature. A comparison of the present predictions is also made to a finite difference solution, which uses the turbulent kinetic energy—turbulent dissipation model of turbulence, for a few cases of accelerating flows.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAn Integral Solution for Heat Transfer in Accelerating Turbulent Boundary Layers
    typeJournal Paper
    journal volume131
    journal issue11
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.3154649
    journal fristpage111702
    identifier eissn1528-8943
    keywordsMomentum
    keywordsFlow (Dynamics)
    keywordsHeat transfer
    keywordsTurbulence
    keywordsReynolds number
    keywordsWakes
    keywordsModeling
    keywordsBoundary layer turbulence
    keywordsEquations
    keywordsPrandtl number
    keywordsPressure gradient
    keywordsTemperature profiles
    keywordsThickness
    keywordsThermal energy
    keywordsEquilibrium (Physics)
    keywordsEnergy dissipation
    keywordsIntegral equations
    keywordsEnthalpy
    keywordsBoundary layers
    keywordsTemperature distribution AND Kinetic energy
    treeJournal of Heat Transfer:;2009:;volume( 131 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian