YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fuel Cell Science and Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fuel Cell Science and Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    System Architectures for Solid Oxide Fuel Cell-Based Auxiliary Power Units in Future Commercial Aircraft Applications

    Source: Journal of Fuel Cell Science and Technology:;2009:;volume( 006 ):;issue: 003::page 31015
    Author:
    R. J. Braun
    ,
    M. Gummalla
    ,
    J. Yamanis
    DOI: 10.1115/1.3008037
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Recent advancements in fuel cell technology through the auspices of the Department of Energy, the National Aeronautics and Space Administration, and industry partners have set the stage for the use of solid oxide fuel cell (SOFC) power generation systems in aircraft applications. Conventional gas turbine auxiliary power units (APUs) account for 20% of airport ground-based emissions. Alleviating airport ground emissions will continue to be a challenge with increased air travel unless new technology is introduced. Mission fuel burn and emissions can be significantly reduced through optimal systems integration of aircraft and SOFC subsystems. This study examines the potential total aircraft mission benefits of tightly integrating SOFC hybrids with aircraft subsystems using United Technologies Corporation Integrated Total Aircraft Power Systems proprietary methodologies. Several system concepts for optimal integration of the SOFC stack with aircraft subsystems are presented and analyzed in terms of mission fuel burn for technologies commensurate with 2015 entry into service. The performance of various hybrid SOFC-APU system architectures is compared against an advanced gas turbine-based APU system. In addition to the merits of different system architectures, optimal SOFC system parameter selection is discussed. The results of the study indicate that despite the lower power density of SOFC-based APU systems, significant aircraft fuel burn (5–7%) and emission reductions (up to 70%) are possible. The majority of the fuel burn savings are realized during aircraft ground operations rather than in-flight mission segments due to the greater efficiency difference between the SOFC system and the advanced APU technology.
    keyword(s): Fuels , Solid oxide fuel cells , Aircraft , System architecture AND Weight (Mass) ,
    • Download: (1.345Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      System Architectures for Solid Oxide Fuel Cell-Based Auxiliary Power Units in Future Commercial Aircraft Applications

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/140843
    Collections
    • Journal of Fuel Cell Science and Technology

    Show full item record

    contributor authorR. J. Braun
    contributor authorM. Gummalla
    contributor authorJ. Yamanis
    date accessioned2017-05-09T00:33:24Z
    date available2017-05-09T00:33:24Z
    date copyrightAugust, 2009
    date issued2009
    identifier issn2381-6872
    identifier otherJFCSAU-28938#031015_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/140843
    description abstractRecent advancements in fuel cell technology through the auspices of the Department of Energy, the National Aeronautics and Space Administration, and industry partners have set the stage for the use of solid oxide fuel cell (SOFC) power generation systems in aircraft applications. Conventional gas turbine auxiliary power units (APUs) account for 20% of airport ground-based emissions. Alleviating airport ground emissions will continue to be a challenge with increased air travel unless new technology is introduced. Mission fuel burn and emissions can be significantly reduced through optimal systems integration of aircraft and SOFC subsystems. This study examines the potential total aircraft mission benefits of tightly integrating SOFC hybrids with aircraft subsystems using United Technologies Corporation Integrated Total Aircraft Power Systems proprietary methodologies. Several system concepts for optimal integration of the SOFC stack with aircraft subsystems are presented and analyzed in terms of mission fuel burn for technologies commensurate with 2015 entry into service. The performance of various hybrid SOFC-APU system architectures is compared against an advanced gas turbine-based APU system. In addition to the merits of different system architectures, optimal SOFC system parameter selection is discussed. The results of the study indicate that despite the lower power density of SOFC-based APU systems, significant aircraft fuel burn (5–7%) and emission reductions (up to 70%) are possible. The majority of the fuel burn savings are realized during aircraft ground operations rather than in-flight mission segments due to the greater efficiency difference between the SOFC system and the advanced APU technology.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleSystem Architectures for Solid Oxide Fuel Cell-Based Auxiliary Power Units in Future Commercial Aircraft Applications
    typeJournal Paper
    journal volume6
    journal issue3
    journal titleJournal of Fuel Cell Science and Technology
    identifier doi10.1115/1.3008037
    journal fristpage31015
    identifier eissn2381-6910
    keywordsFuels
    keywordsSolid oxide fuel cells
    keywordsAircraft
    keywordsSystem architecture AND Weight (Mass)
    treeJournal of Fuel Cell Science and Technology:;2009:;volume( 006 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian