YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Annular Extrudate Swell of Newtonian Fluids Revisited: Extended Range of Compressible Simulations

    Source: Journal of Fluids Engineering:;2009:;volume( 131 ):;issue: 007::page 71203
    Author:
    Evan Mitsoulis
    DOI: 10.1115/1.3155996
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In a recent article (, 2007, “Annular Extrudate Swell of Newtonian Fluids: Effects of Compressibility and Slip at the Wall,” ASME J. Fluids Eng., 129, pp. 1384–1393), numerical simulations were undertaken for the benchmark problem of annular extrudate swell of Newtonian fluids. The effects of weak compressibility and slip at the wall were studied through simple linear laws. While slip was studied in the full range of parameter values, compressibility was confined within a narrow range of values for weakly compressible fluids, where the results were slightly affected. This range is now markedly extended (threefold), based on a consistent finite element method formulation for the continuity equation. Such results correspond to foam extrusion, where compressibility can be substantial. The new extended numerical results are given for different inner/outer diameter ratios κ under steady-state conditions for Newtonian fluids. They provide the shape of the extrudate, and, in particular, the thickness and diameter swells, as a function of the dimensionless compressibility coefficient B. The pressures from the simulations have been used to compute the excess pressure losses in the flow field (exit correction). As before, weak compressibility slightly affects the thickness swell (about 1% in the range of 0≤B≤0.02) mainly by a swell reduction, after which a substantial and monotonic increase occurs for B>0.02. The exit correction increases with increasing compressibility levels in the lower B-range and is highest for the tube (κ=0) and lowest for the slit (κ=1). Then it passes through a maximum around B≈0.02, after which it decreases slowly. This decrease is attributed to the limited length of the flow channel (here chosen to be eight die gaps).
    • Download: (1.638Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Annular Extrudate Swell of Newtonian Fluids Revisited: Extended Range of Compressible Simulations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/140712
    Collections
    • Journal of Fluids Engineering

    Show full item record

    contributor authorEvan Mitsoulis
    date accessioned2017-05-09T00:33:08Z
    date available2017-05-09T00:33:08Z
    date copyrightJuly, 2009
    date issued2009
    identifier issn0098-2202
    identifier otherJFEGA4-27381#071203_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/140712
    description abstractIn a recent article (, 2007, “Annular Extrudate Swell of Newtonian Fluids: Effects of Compressibility and Slip at the Wall,” ASME J. Fluids Eng., 129, pp. 1384–1393), numerical simulations were undertaken for the benchmark problem of annular extrudate swell of Newtonian fluids. The effects of weak compressibility and slip at the wall were studied through simple linear laws. While slip was studied in the full range of parameter values, compressibility was confined within a narrow range of values for weakly compressible fluids, where the results were slightly affected. This range is now markedly extended (threefold), based on a consistent finite element method formulation for the continuity equation. Such results correspond to foam extrusion, where compressibility can be substantial. The new extended numerical results are given for different inner/outer diameter ratios κ under steady-state conditions for Newtonian fluids. They provide the shape of the extrudate, and, in particular, the thickness and diameter swells, as a function of the dimensionless compressibility coefficient B. The pressures from the simulations have been used to compute the excess pressure losses in the flow field (exit correction). As before, weak compressibility slightly affects the thickness swell (about 1% in the range of 0≤B≤0.02) mainly by a swell reduction, after which a substantial and monotonic increase occurs for B>0.02. The exit correction increases with increasing compressibility levels in the lower B-range and is highest for the tube (κ=0) and lowest for the slit (κ=1). Then it passes through a maximum around B≈0.02, after which it decreases slowly. This decrease is attributed to the limited length of the flow channel (here chosen to be eight die gaps).
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAnnular Extrudate Swell of Newtonian Fluids Revisited: Extended Range of Compressible Simulations
    typeJournal Paper
    journal volume131
    journal issue7
    journal titleJournal of Fluids Engineering
    identifier doi10.1115/1.3155996
    journal fristpage71203
    identifier eissn1528-901X
    treeJournal of Fluids Engineering:;2009:;volume( 131 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian