YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Investigations of Tripping Effect on the Friction Factor in Turbulent Pipe Flows

    Source: Journal of Fluids Engineering:;2009:;volume( 131 ):;issue: 007::page 71202
    Author:
    A. Al-Salaymeh
    ,
    O. A. Bayoumi
    DOI: 10.1115/1.3153364
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Tripping devices are usually installed at the entrance of laboratory-scale pipe test sections to obtain a fully developed turbulent flow sooner. The tripping of laminar flow to induce turbulence can be carried out in different ways, such as using cylindrical wires, sand papers, well-organized tape elements, fences, etc. Claims of tripping effects have been made since the classical experiments of Nikuradse (1932, Gesetzmässigkeit der turbulenten Strömung in glatten Rohren, Forschungsheft 356, Ausgabe B, Vol. 3, VDI-Verlag, Berlin), which covered a significant range of Reynolds numbers. Nikuradse’s data have become the metric by which theories are established and have also been the subject of intense scrutiny. Several subsequent experiments reported friction factors as much as 5% lower than those measured by Nikuradse, and the authors of those reports attributed the difference to tripping effects, e.g., work of (2003, “Investigation of the Mean-Flow Scaling and Tripping Effect on Fully Developed Turbulent Pipe Flow,” J. Hydrodynam., 15(1), pp. 14–22). In the present study, measurements with and without ring tripping devices of different blocking areas of 10%, 20%, 30%, and 40% have been carried out to determine the effect of entrance condition on the developing flow field in pipes. Along with pressure drop measurements to compute the skin friction, both the Pitot tube and hot-wire anemometry measurements have been used to accurately determine the mean velocity profile over the working test section at different Reynolds numbers based on the mean velocity and pipe diameter in the range of 1.0×105–4.5×105. The results we obtained suggest that the tripping technique has an insignificant effect on the wall friction factor, in agreement with Nikuradse’s original data.
    • Download: (1.181Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Investigations of Tripping Effect on the Friction Factor in Turbulent Pipe Flows

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/140710
    Collections
    • Journal of Fluids Engineering

    Show full item record

    contributor authorA. Al-Salaymeh
    contributor authorO. A. Bayoumi
    date accessioned2017-05-09T00:33:08Z
    date available2017-05-09T00:33:08Z
    date copyrightJuly, 2009
    date issued2009
    identifier issn0098-2202
    identifier otherJFEGA4-27381#071202_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/140710
    description abstractTripping devices are usually installed at the entrance of laboratory-scale pipe test sections to obtain a fully developed turbulent flow sooner. The tripping of laminar flow to induce turbulence can be carried out in different ways, such as using cylindrical wires, sand papers, well-organized tape elements, fences, etc. Claims of tripping effects have been made since the classical experiments of Nikuradse (1932, Gesetzmässigkeit der turbulenten Strömung in glatten Rohren, Forschungsheft 356, Ausgabe B, Vol. 3, VDI-Verlag, Berlin), which covered a significant range of Reynolds numbers. Nikuradse’s data have become the metric by which theories are established and have also been the subject of intense scrutiny. Several subsequent experiments reported friction factors as much as 5% lower than those measured by Nikuradse, and the authors of those reports attributed the difference to tripping effects, e.g., work of (2003, “Investigation of the Mean-Flow Scaling and Tripping Effect on Fully Developed Turbulent Pipe Flow,” J. Hydrodynam., 15(1), pp. 14–22). In the present study, measurements with and without ring tripping devices of different blocking areas of 10%, 20%, 30%, and 40% have been carried out to determine the effect of entrance condition on the developing flow field in pipes. Along with pressure drop measurements to compute the skin friction, both the Pitot tube and hot-wire anemometry measurements have been used to accurately determine the mean velocity profile over the working test section at different Reynolds numbers based on the mean velocity and pipe diameter in the range of 1.0×105–4.5×105. The results we obtained suggest that the tripping technique has an insignificant effect on the wall friction factor, in agreement with Nikuradse’s original data.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleInvestigations of Tripping Effect on the Friction Factor in Turbulent Pipe Flows
    typeJournal Paper
    journal volume131
    journal issue7
    journal titleJournal of Fluids Engineering
    identifier doi10.1115/1.3153364
    journal fristpage71202
    identifier eissn1528-901X
    treeJournal of Fluids Engineering:;2009:;volume( 131 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian