YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Large-Eddy Simulation of Wake and Boundary Layer Interactions Behind a Circular Cylinder

    Source: Journal of Fluids Engineering:;2009:;volume( 131 ):;issue: 009::page 91201
    Author:
    S. Sarkar
    ,
    Sudipto Sarkar
    DOI: 10.1115/1.3176982
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Large-eddy simulations (LESs) of flow past a circular cylinder in the vicinity of a flat plate have been carried out for three different gap-to-diameter (G/D) ratios of 0.25, 0.5, and 1.0 (where G signifies the gap between the flat plate and the cylinder, and D signifies the cylinder diameter) following the experiment of (2002, “Flow Visualization Around a Circular Cylinder Near to a Plane Wall,” J. Fluids Struct., 16, pp. 175–191). The flow visualization along with turbulent statistics are presented for a Reynolds number of Re=1440 (based on D and the inlet free-stream velocity U∞). The three-dimensional time-dependent, incompressible Navier–Stokes equations are solved using a symmetry-preserving finite-difference scheme of second-order spatial and temporal accuracy. The immersed-boundary method is employed to impose the no-slip boundary condition at the cylinder surface. An attempt is made to understand the physics of flow involving interactions of shear layers shed from the cylinder and the wall boundary layer. Present LES reveals the shear layer instability and formation of small-scale eddies apart from their mutual interactions with the boundary layer. It has been observed that G/D ratio has a large influence on the modification of wake dynamics and evolution of the wall boundary layer. For a low gap ratio, it is difficult to identify the boundary layer because of its strong interactions with the shear layers; however, a rapid transition to turbulence of the boundary layer, which is similar to bypass transition, is observed for a large gap ratio.
    • Download: (4.797Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Large-Eddy Simulation of Wake and Boundary Layer Interactions Behind a Circular Cylinder

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/140683
    Collections
    • Journal of Fluids Engineering

    Show full item record

    contributor authorS. Sarkar
    contributor authorSudipto Sarkar
    date accessioned2017-05-09T00:33:04Z
    date available2017-05-09T00:33:04Z
    date copyrightSeptember, 2009
    date issued2009
    identifier issn0098-2202
    identifier otherJFEGA4-27390#091201_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/140683
    description abstractLarge-eddy simulations (LESs) of flow past a circular cylinder in the vicinity of a flat plate have been carried out for three different gap-to-diameter (G/D) ratios of 0.25, 0.5, and 1.0 (where G signifies the gap between the flat plate and the cylinder, and D signifies the cylinder diameter) following the experiment of (2002, “Flow Visualization Around a Circular Cylinder Near to a Plane Wall,” J. Fluids Struct., 16, pp. 175–191). The flow visualization along with turbulent statistics are presented for a Reynolds number of Re=1440 (based on D and the inlet free-stream velocity U∞). The three-dimensional time-dependent, incompressible Navier–Stokes equations are solved using a symmetry-preserving finite-difference scheme of second-order spatial and temporal accuracy. The immersed-boundary method is employed to impose the no-slip boundary condition at the cylinder surface. An attempt is made to understand the physics of flow involving interactions of shear layers shed from the cylinder and the wall boundary layer. Present LES reveals the shear layer instability and formation of small-scale eddies apart from their mutual interactions with the boundary layer. It has been observed that G/D ratio has a large influence on the modification of wake dynamics and evolution of the wall boundary layer. For a low gap ratio, it is difficult to identify the boundary layer because of its strong interactions with the shear layers; however, a rapid transition to turbulence of the boundary layer, which is similar to bypass transition, is observed for a large gap ratio.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleLarge-Eddy Simulation of Wake and Boundary Layer Interactions Behind a Circular Cylinder
    typeJournal Paper
    journal volume131
    journal issue9
    journal titleJournal of Fluids Engineering
    identifier doi10.1115/1.3176982
    journal fristpage91201
    identifier eissn1528-901X
    treeJournal of Fluids Engineering:;2009:;volume( 131 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian