YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Solar Hydrogen Production Integrating Low-Grade Solar Thermal Energy and Methanol Steam Reforming

    Source: Journal of Energy Resources Technology:;2009:;volume( 131 ):;issue: 001::page 12601
    Author:
    Hui Hong
    ,
    Qibin Liu
    ,
    Hongguang Jin
    DOI: 10.1115/1.3068336
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this paper, a novel approach of middle-temperature solar hydrogen production using methanol steam reforming is proposed. It can be carried out at around 200–300°C, much lower than the temperatures of other solar thermochemical hydrogen production. For the realization of the proposed solar hydrogen production, solar experiments are investigated in a modified 5 kW solar receiver/reactor with one-tracking parabolic trough concentrators. The feature of significantly upgrading the energy level from lower-grade solar thermal energy to higher-grade chemical energy is experimentally identified. The interaction between the hydrogen yield and the energy-level upgrade of solar thermal energy is clarified. Also, this kind of solar hydrogen production is experimentally compared with methanol decomposition. The preliminarily economic evaluation of the hydrogen production is identified. As a result, in the solar-driven steam reforming, the thermochemical efficiency of solar thermal energy converted into chemical energy reached up to 40–50% under a mean solar flux of 550–700 W/m2, and exceeding 90% of hydrogen production is achieved, with about 70% higher than that of methanol decomposition. The thermochemical performance of solar-driven methanol steam reforming experimentally examined at around 200–300°C for hydrogen production may be competitive with conventional methane reforming. The promising results obtained here indicate that the proposed solar hydrogen production may provide the possibility of a synergetic process of both high production of hydrogen and effective utilization of solar thermal energy at around 200–300°C.
    • Download: (831.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Solar Hydrogen Production Integrating Low-Grade Solar Thermal Energy and Methanol Steam Reforming

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/140374
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorHui Hong
    contributor authorQibin Liu
    contributor authorHongguang Jin
    date accessioned2017-05-09T00:32:27Z
    date available2017-05-09T00:32:27Z
    date copyrightMarch, 2009
    date issued2009
    identifier issn0195-0738
    identifier otherJERTD2-26559#012601_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/140374
    description abstractIn this paper, a novel approach of middle-temperature solar hydrogen production using methanol steam reforming is proposed. It can be carried out at around 200–300°C, much lower than the temperatures of other solar thermochemical hydrogen production. For the realization of the proposed solar hydrogen production, solar experiments are investigated in a modified 5 kW solar receiver/reactor with one-tracking parabolic trough concentrators. The feature of significantly upgrading the energy level from lower-grade solar thermal energy to higher-grade chemical energy is experimentally identified. The interaction between the hydrogen yield and the energy-level upgrade of solar thermal energy is clarified. Also, this kind of solar hydrogen production is experimentally compared with methanol decomposition. The preliminarily economic evaluation of the hydrogen production is identified. As a result, in the solar-driven steam reforming, the thermochemical efficiency of solar thermal energy converted into chemical energy reached up to 40–50% under a mean solar flux of 550–700 W/m2, and exceeding 90% of hydrogen production is achieved, with about 70% higher than that of methanol decomposition. The thermochemical performance of solar-driven methanol steam reforming experimentally examined at around 200–300°C for hydrogen production may be competitive with conventional methane reforming. The promising results obtained here indicate that the proposed solar hydrogen production may provide the possibility of a synergetic process of both high production of hydrogen and effective utilization of solar thermal energy at around 200–300°C.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleSolar Hydrogen Production Integrating Low-Grade Solar Thermal Energy and Methanol Steam Reforming
    typeJournal Paper
    journal volume131
    journal issue1
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.3068336
    journal fristpage12601
    identifier eissn1528-8994
    treeJournal of Energy Resources Technology:;2009:;volume( 131 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian